Математическая энциклопедия - хегора диаграмма
Связанные словари
Хегора диаграмма
один из наиболее употребительных способов задания замкнутых ориентируемых трехмерных многообразий.X. д. рода псостоит из двух систем простых замкнутых кривых в замкнутой ориентируемой поверхности Fрода п. Кривые каждой системы удовлетворяют следующим условиям: 1) число кривых в системе равно n;2)кривые системы не должны иметь общих точек; 3) после разрезания поверхности Fпо этим кривым должна получаться связная поверхность (сфера с 2п удаленными открытыми дисками). X. д. тесно связаны с Хегора разбиениями:кривые одной системы представляют собой полную систему меридианов (секущих окружностей ручек) одного кренделя разбиения, кривые второй системы полную систему меридианов другого кренделя. X. д. наз. эквивалентными, если эквивалентны отвечающие им разбиения Хегора. Известно, напр., что любые две X. д. трехмерной сферы эквивалентны, если их род одинаков. Род X. д. всегда можно увеличить, взяв вместо поверхности . ее связную сумму с двумерным тором и добавив к кривым диаграммы меридиан и параллель этого тора. Такая операция наз. операцией стабилизации. Любые две X. д. одного и того же многообразия стабильно эквивалентны, т. е. становятся эквивалентными после применения к каждой из них нескольких операций стабилизации.
Лит. см. при статье Хегора разбиение.
С. В. Матвеев.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985