Математическая энциклопедия - маурера - картана форма
Связанные словари
Маурера - картана форма
левоинвариантная 1-форма на группе Ли G, т. е. дифференциальная форма степени 1 на G, удовлетворяющая условию
для любого левого сдвига
М.К. ф. на Gнаходятся во взаимно однозначном соответствии с линейными формами на касательном пространстве в точке е; точнее, соответствие,
сопоставляющее каждой М.К. ф.ее значение из , является изоморфизмом пространства
М.К. ф. на . Дифференциал М.К. ф. есть левоинвариантная 2-форма на G, определяемая формулой
где любые левоинвариантные векторные поля на G. Пусть базис в и пусть , i=l, . . ., n,такая М.К. ф., что
Тогда
где структурные константы алгебры Ли
группы G, состоящей из левоинвариантных векторных полей на G, в базисе таком, что
Равенства (2) (или (1)) наз. уравнениями Маурера Картана. Первым их получил (в иной, по эквивалентной форме) Л. Маурер [1]. Формы wi были введены Э. Картаном в 1904 (см. [2]).
Пусть канонич. координаты в окрестности точки ена G, определенные базисом Тогда формы записываются в виде
причем матрица
вычисляется по формуле
где присоединенное представление алгебры Ли
Далее, пусть есть -значная 1-форма на G, сопоставляющая каждому касательному вектору к Gединственное левоинвариантное векторное поле, содержащее этот вектор (каноническая левая дифференциальная форма). Тогда
и
что является еще одной записью уравнений Маурера Картана.
Лит.:[1] Maurer L., "Sitzungsber. math, physik. Kl. Bayerischen Akad. Wiss." (Munchen), 1899, Bd 18, S. 103-50; [2] Gartan E., Cеuvres completes, pt. 2, vol. 2, P., 1953, p. 571-624; [3] Шевалле К., Теория групп Ли, т. 1, М., 1948; [4] Бурбаки Н., Группы и алгебры Ли. Алгебры Ли, свободные алгебры Ли и группы Ли, пер. с франц., М., 1976; [5] Неlgason S., Differential geometry, Lie groups and symmetric spaces, N. Y.San Fr. L., 1978. А. Л. Онищип.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985