Поиск в словарях
Искать во всех

Философская энциклопедия - правило замены равного равным

Правило замены равного равным

ПРАВИЛО ЗАМЕНЫ РАВНОГО РАВНЫМ

ПРА́ВИЛО ЗАМЕ́НЫ РА́ВНОГО РА́ВНЫМ

правило, согласно к-рому в случае, если два выражения p и q равны,. во всяком истинном высказывании, содержащем p или q, можно одно из них заменить на другое, не нарушая истинности этого высказывания. Выражение "р и q равны" следует понимать в том смысле, что p и q связаны между собой отношением типа равенства. Это отношение должно быть p е ф л е к с и в н ы м (т.е. должно быть верно, что р = р), симметричным (из p = q должно следовать q = p) и т р а н з и т и в н ы м (из р = q и q = r должно следовать р = r). Кроме того, оно должно обладать свойствами монотонности, т.е. если p входит как составная часть (как компонент) в нек-рое выражение А(р) и p=q, то A(p) = A(q), где через A(q) обозначено выражение, получающееся из А(р) заменой нек-рого вхождения p на q. П. з. р. р. и выражает эту монотонность отношения типа равенства.

Когда речь идет о двух объектах p и q, то обычно предполагается, что p и q – различные объекты. В таком случае высказывание "р равно q" означает, что к различным объектам p и q применяется абстракция отождествления. При этом два объекта, к-рые считаются равными в одном случае, могут не быть равными в другом. Напр., формулы А ⊃ А и А / А равны, если, рассматривая их как формулы классич. алгебры логики, равенство понимать в смысле совпадения их истинностных значений или если считать две формулы U и B равными в том случае, когда в классич. исчислении высказываний выводима формула U ≡ B (где ≡ есть знак операции эквиваленции). Но если считать две формулы равными тогда, когда они графически совпадают друг с другом, то формулы А ⊃ Α и А / А не будут равны. Не будут эти формулы равными и в том случае, когда под равенством формул понимают выводимость их эквиваленции в интуиционистском исчислении высказываний.

П. з. р. р. издавна употребляется в математике при тождеств, преобразованиях. Оно, по существу, содержится у Лейбница в его определении равенства. Именно Лейбниц определяет равенство посредством аксиомы (x = y) ≡ (A (x) ⊃ A (y)) (знак ⊃ означает "влечет"). Если в этой формуле рассматривать А как предикатную переменную, то средствами предикатов исчисления (включая правило подстановки вместо предикатных переменных) из этой аксиомы получается рефлексивность, симметричность и транзитивность равенства. Сама же эта аксиома выражает монотонность равенства.

Обычно в дедуктивных теориях употребляется более слабое определение равенства, чем то, к-рое было предложено Лейбницем. В определении Лейбница на место предикатной переменной подставляются произвольные предикаты, но определение произвольного предиката представляет большие трудности. Поэтому в теориях, где все предикаты строятся, исходя из нек-рых элементарных предикатов, монотонность обычно требуется только для последних, а остальные предикаты стараются определить так, чтобы монотонность имела место и для них. Теории, в к-рых все предикаты обладают св-вом монотонности, наз. э к с т е н с и о н а л ь н ы м и. Теории, в к-рых допускаются предикаты, не обладающие этим св-вом, наз. и н т е н с и о н а л ь н ы м и. Впрочем, изменяя определение равенства, интенсиональную теорию удается превратить в экстенсиональную (при этом надо указывать по отношению к какому виду равенства теория является интенсиональной, а по отношению к какому – экстенсиональной).

П. з. р. р. получило дальнейшее развитие в математич. логике (в частности, у Джевонса, см. Принцип замещения). Если в классич. или интуиционистской логике считать две формулы U и B равными в том случае, когда доказуема формула U ≡ B, то П. з. р. р., к-рое принимает в этом случае вид правила замены эквивалентными, справедливо как в классич., так и в интуиционистской логике.

П. з. р. р. применяется в общем случае и к равенству по определению; если p равно q по определению, то в выражении, содержащем р, можно заменить p на q. При этом следует иметь в виду, что результат замены определяемого выражения определяющим его выражением дает не просто выражение, равное или эквивалентное первому, а раскрывает смысл первого выражения. С П. з. р. р. связаны нек-рые логич. ошибки и парадоксы в тех случаях, когда это правило применяется без учета тех отношений, в к-рых равные объекты могут быть отличны друг от друга. Так, выражение "4" и "6–2" обозначает одно и то же число, и в этом смысле 4=6–2. Однако из этого не следует, будто все, что можно утверждать о выражении "4", можно утверждать о выражении "6–2" (напр., что выражение "4" содержит знак "–") (см. также Взаимозаменимости отношение).

Лит.: Жегалкин И., Трансфинитные числа, М., 1907, гл. 1; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. в, 7; Карнап Р., Значение и необходимость, пер. [с англ.], М., 1959; Lеibnitz G. W., Opera philosophica..., В., 1840; Jevons W. S., The substitution of similars, the true principle of reasoning..., L., 1869.

В. Донченко. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960—1970.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое правило замены равного равным
Значение слова правило замены равного равным
Что означает правило замены равного равным
Толкование слова правило замены равного равным
Определение термина правило замены равного равным
pravilo zameny ravnogo ravnym это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):