Химическая энциклопедия - молекулярная биология
Молекулярная биология
изучает явления жизни на уровне макромолекул (гл. обр. белков и нуклеиновых к-т) в бесклеточных структурах (рибосомы и др.), в вирусах, а также в клетках. Цель М. б.-установление роли и механизма функционирования этих макромолекул на основе знания их структуры и св-в.
Исторически М. б. сформировалась в ходе развития направлений биохимии, изучающих биополимеры. В то время как биохимия исследует гл. обр. обмен веществ и биоэнергетику, М. б. уделяет главное внимание изучению способа хранения наследств. информации, механизма ее передачи дочерним клеткам и реализации этой информации. М.6.-пограничная наука, возникшая на границе биохимии, биоорганической химии, биофизики, орг. химии, цитологии и генетики. Формальной датой возникновения М. б. считают 1953, когда Дж. Уотсон и Ф. Крик установили структуру ДНК и высказали подтвердившееся позже предположение о механизме ее репликации (удвоении), лежащем в основе наследственности. Таким образом были увязаны ф-ции этого биополимера (тот факт, что ДНК-фактор наследственнести, установлен в 1944 О. Эйвери) с его хим. структурой и св-вами. Важное значение для становления М. б. как науки имели также работы по изучению мол. основ мышечного сокращения (В. А. Энгельгардт и М. И. Любимова, с 1939).
По истокам своего развития М. б. неразрывно связана с м о л е к у л я р н о й г е н е т и к о й (наука, изучающая струк-турно-функцион. организацию генетич. аппарата клеток и механизма реализации наследств. информации), к-рая продолжает составлять важную часть М. б., хотя и сформировалась уже в значит. мере в самостоят. дисциплину. Именно в этой области были достигнуты результаты, к-рые способствовали развитию М. б. и восприятию ее принципов.
Для понимания закономерностей строения нуклеиновых к-т и их поведения в клетке важнейшее значение имеет принцип комплементарности пуриновых и пиримидиновых оснований, установленный в 1953 Уотсоном и Криком. Признание значения пространств. отношений нашло свое выражение также в представлении о комплементарности пов-стей макромолекул и мол. комплексов, что является необходимым условием проявления слабых сил невалентных взаимод. (водородные связи, ван-дер-ваальсовы взаимод. и др.), действующих лишь на коротких расстояниях и создающих морфологич. разнообразие биол. структур, их функцион. подвижность. Невалентные взаимод. обусловливают образование фермент-субстратных комплексов, самосборку биол. структур, напр. рибосом, и др.
Важное достижение М. б.-раскрытие на мол. уровне механизма мутаций. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклео-тидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции был А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит. успехи в изучении строения клеточного ядра, в т. ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток способствовало развитию генетики со-матич. клеток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит. успех М. б.-первый хим. синтез гена, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способствовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом).
Исследование механизма биосинтеза белка позволило установить т. наз. центр. постулат, характеризующий движение генетич. информации: ДНКЧ > матричная рибонуклеи-новая кислота (мРНК) Ч > белок (существование мРНК впервые предсказано Белозерским и А. С. Спириным в 1957). Согласно этому постулату, белок представляет собой своего рода информац. клапан, препятствующий возвращению информации на уровень РНК и ДНК.
Образование в организме белков и нуклеиновых к-т осуществляется по типу матричного синтеза, для к-рого необходима матрица, или "шаблон",-исходная полимерная молекула, к-рая предопределяет последовательность нуклеоти-дов (аминокислот) в синтезируемой копии (гипотеза о таком механизме синтеза биополимеров сформулирована в 1928 Н. К. Кольцовым). Такими матрицами являются ДНК при репликации и транскрипции (синтез мРНК на матрице ДНК), а также мРНК при трансляции (синтезе белка на матрице мРНК). Важное значение имело открытие обратной транскрипции, т. е. синтеза ДНК на матрице РНК, к-рое происходит у онкогенных РНК-содержащих вирусов с помощью спец. фермента обратной транскриптазы (X. Темин и Д. Балтимор, 1970). Открытие генетического кода (его концепция сформулирована А. Даунсом и Г. Гамовым в 1952-54, а расшифровка осуществлена М. Ниренбергом,
X. Маттеи, С. Очоа и Кораной в 1961-65) позволило установить соотношение последовательности нуклеотидов в нуклеиновых к-тах с последовательностью аминокислот в белках. Регуляция синтеза белка наиб. изучена на уровне транскрипции. Для объяснения механизма регуляции важное значение имеет концепция оперона (совокупность связанных между собой генов и прилегающих к ним регуляторных участков), разработанная Жакобом и Ж. Моно в 1959, открытие белков-репрессоров (подавляют транскрипцию гена; см. Регуляторные белки), аллостерич. регуляции (изменение скорости транскрипции в зависимости от активности ферментов, участвующих в этом процессе) и регуляции по принципу обратной связи (см. также Регуляторы ферментов).
К сер. 60-х гг. 20 в. утвердилось представление об универсальности осн. черт строения и ф-ции гена как сложной линейной структуры ДНК, к-рый в результате транскрипции и послед. трансляции определяет первичную структуру по-липептидной цепи.