Поиск в словарях
Искать во всех

Математическая энциклопедия - боголюбова цепочка уравнений

Боголюбова цепочка уравнений

(ББГКИ-уравнения Н. Н. Боголюбов, М. Борн (М. Born), Дж. Грин (G. Green), Дж. Кирквуд (J. G. Kirkwood), Дж. Ивон (J. Yvon) цепочка уравнений (иерархия) для одночастичных, двухчастичных и т. д. функций распределения классической статистич. системы. Эти функции определяются как

где объем системы, а wN есть N-частичная нормированная на единицу функция распределения, удовлетворяющая Лиувилля уравнению

где фигурные скобки Пуассона скобки, а Я есть гамильтониан системы. Б. ц. у. в предельном статистич. случае имеет вид уравнения для со специфич. "зацеплением" с функцией более высокого ранга:

где потенциал взаимодействия i-й и частиц, а гамильтониан sчастиц системы. В термодинамически равновесном случае, когда распределение по импульсам каждой частицы является Максвелла распределением, рассматриваются s-частич-ные функции распределения по координатам частиц, к-рые определяются соотношениями типа (1) через Л'-частичную функцию

где причем есть сумма кинетич. энергий частиц системы, а конфигурационный интеграл Qопределяется из условия нормировки (4). Б. ц. у. для этих функций имеет вид:

где потенциальная энергия взаимодействия s частиц системы.

При помощи функций распределения, гл. обр. и , могут быть выражены все специфические характеристики статистич. систем. Основные трудности исследования Б. ц. у. (3) или (5) связаны с проблемами замыкания системы (расцепление Б. ц. у.) и решения замкнутой системы со специальными предельными условиями для функций . Это исследование специфично для физич. систем различного типа и наиболее разработано для случаев короткодействия, когда где эффективный радиус взаимодействия частиц друг с другом, и для случаев дальнодействия, когда в частности для системы с кулоновским взаимодействием. Во временной теории это приводит непосредственно к кинетич. Больцмана уравнению для одночас-тичной функции или к Власова кинетическому уравнению, а в равновесной теории к вириалъному разложению для термодинамич. потенциала или к специфическим кулоновским поправкам.

При рассмотрении квантовых статистич. систем Б. ц. у. составляется для s-частичных статистич. квантовых операторов являющихся следами по переменным частиц общего -частичного оператора матрицы плотности. Эти уравнения имеют вид, аналогичный уравнениям (3), в к-рых классич. скобки Пуассона заменены квантовыми скобками.

Лит.:[1] Боголюбов Н. Н., Избр. тр., т. 2, К., 1970, с. 99 196; [2] его же, там же, с. 227-493; [3] Уленбек Дж., Форд Дж., Лекции по статистической механике, пер. с англ., М., 1965. И. А. Квасников.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое боголюбова цепочка уравнений
Значение слова боголюбова цепочка уравнений
Что означает боголюбова цепочка уравнений
Толкование слова боголюбова цепочка уравнений
Определение термина боголюбова цепочка уравнений
bogolyubova cepochka uravneniy это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):