Математическая энциклопедия - глобальная структура траекторий
Связанные словари
Глобальная структура траекторий
квадратичного дифференциала описание поведения в целом траекторий положительного квадратичного дифференциала на конечной ориентированной римановой поверхности. Пусть R - конечная ориентированная риманова поверхность, положительный квадратичный дифференциал на R; пусть Смножество всех нулей и простых полюсов , а Н - множество всех полюсов порядка .
Траектории образуют семейство F, обладающее многими свойствами регулярных семейств кривых. Это семейство кривых покрывает R, за исключением точек множества , т. е. через каждую точку из проходит единственный элемент F. Поведение траекторий в окрестности любой точки Rописывается локальной структурой траекторий квадратичного дифференциала. При рассмотрении глобальной структуры кривых семейства Fв точках существенную роль играют следующие объединения траекторий. Пусть Ф объединение всех траекторий имеющих предельную концевую точку в нок-рой точке множества подмножество Ф, являющееся объединением всех траекторий , к-рые имеют одну предельную концевую точку в точке множества Си вторую предельную концевую точку в точке множества .
Множество Кна Rназ. F-множеством относительно , если каждая траектория дифференциала , пересекающаяся с К, полностью лежит в K. Внутреннее замыкание множества Копределяется как внутренность замыкания Ки обозначается К. Внутреннее замыкание F-множества снова является F-множеством. Концевой областью Еотносительно наз. наибольшее связное открытое F-множество на R, обладающее следующими свойствами: 1) Ене содержит точек множества ; 2) Езаполнено траекториями дифференциала , каждая из к-рых имеет предельную концевую точку в каждом из двух возможных направлений в данной точке Еконформно отображается функцией
на верхнюю или нижнюю полуплоскость плоскости (в зависимости от выбора ветви корня). Из локальной структуры траекторий следует, что точка Адолжна быть полюсом дифференциала не ниже 3-го порядка.
Полосообразной областью Sотносительно наз. наибольшее связное открытое F- множество на Л, обладающее следующими свойствами: 1) 5 не содержит точек множества ; 2) Sзаполнено траекториями дифференциала , каждая из к-рых имеет в одной точке предельную концевую точку в одном направлении, а в другой (возможно, совпадающей с А).точке предельную концевую точку в другом направлении; 3) Sконформно отображается функцией
на полосу где а, bконечные действительные числа, а<b. Точки Аи Вмогут быть полюсами порядка 2 и более.
Круговойобластью относительно наз. наибольшее связное открытое F-множество на R, обладающее следующими свойствами: 1) содержит единственный двойной полюс Адифференциала ; 2) заполнено траекториями дифференциала , каждая из к-рых является замкнутой жордановой кривой, отделяющей Аот границы ; 3) при надлежащем выборе чисто мнимой постоянной сфункция
дополненная значением нуль в точке А, отображает конформно на круг , причем точка Апереходит в точку .
Кольцевой областью D относительно наз. наибольшее связное открытое F-множество на R, обладающее следующими свойствами: 1) Dне содержит точек множества ; 2) Dзаполнено траекториями дифференциала , каждая из к-рых является замкнутой жордановой кривой; 3) при надлежащем выборе чисто мнимой постоянной сфункция
отображает Dконформно на круговое кольцо