Математическая энциклопедия - пеано теорема
Связанные словари
Пеано теорема
одна из теорем существования решения обыкновенного дифференциального уравнения, установленная Дж. Пеано [1] и состоящая в следующем. Пусть дано дифференциальное уравнение
(*)
Тогда если функция f ограничена и непрерывна в области G, то через каждую внутреннюю точку ( х 0, y0) этой области проходит, по крайней мере, одна интегральная кривая уравнения (*). Может оказаться, что через нек-рую точку проходит более одной интегральной кривой, напр. для уравнения существует бесконечное множество интегральных кривых, проходящих через точку (0, 0):
где а, b - произвольные постоянные.
Имеются обобщения (в том числе многомерные) П. т. (см. [2], [3]).
Лит.:[1] Реапо G., "Math. Ann.", 1890, Bd 37, S. 182228; [2] Петровский И. Г., Лекции по теории обыкновенных дифференциальных уравнений, 6 изд., М,, 1970; [3] Xартман Ф., Обыкновенные дифференциальные уравнения, пер. с англ., М., 1970. М. И. Войцеховский.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985