Химическая энциклопедия - металлотермия
Металлотермия
процессы получения металлов, основанные на восстановлении их оксидов и галогенидов другими, более активными металлами; протекают с выделением тепла. С помощью М. получают такие металлы, как, напр., Ti, U, РЗЭ, Nb, Та, безуглеродистые сплавы, отличающиеся высокой чистотой (гл. обр. по углероду). Высокая чистота конечных продуктов металлотермич. восстановления обусловливает, напр., высокую пластичность полученных металлов, т. к. содержание мн. примесей в них, в первую очередь примесей внедрения, на очень низком уровне.
Металлотермич. процессы инициируются теплом. Исходным соед. для М. в осн. служат оксиды, хлориды и фториды. Хлориды и фториды обычно используют в тех случаях, когда содержание кислорода в получаемом металле (напр., Ti) должно быть ограничено либо разделение металлич. и шлаковой оксидной фаз затруднено из-за высокой хим. активности восстановленных металлов (РЗЭ). Осн. требования к исходному соед. высокое тепловыделение при восстановлении, простота и полнота отделения исходного соед. от получаемого металла.
Р-ция металлотермич. восстановления MX + М'М + + М'Х протекает слева направо при условии более высокого сродства металла-восстановителя (М') к компоненту X, чем у восстанавливаемого металла (М); DG0 металлотермич. процесса, как правило, отрицательна. В качестве восстановителей могут использоваться лишь металлы, образующие термически стойкие соед. с О, Cl, F.
На рис. 1 представлены диаграммы зависимости величин DG0 обp оксидов, хлоридов и фторидов из простых в-в от т-ры, из к-рых видно, что среди относительно распространенных и доступных металлов наиб. прочные оксиды и галогениды образуют Al, Mg, Ca, а также щелочные металлы. Поэтому наиб. распространенные восстановители в M.-Na (реже Li), Al, Mg, Ca, иногда La и др. металлы. Соотв. М. подразделяют на натриетермию, алюминотермию, магниетермию и т. д.; к М. условно относят также и силикотермию.
Для сдвига равновесия металлотермич. восстановления и повышения теплового эффекта р-ции (как, напр., в случае восстановления алюминием СаО или ThO2, имеющих большее, чем у Аl2 О 3, абс. значение величины DG0 обр) используют спец. приемы вводят добавки (напр., Si) для связывания выделяющегося металла и получают в качестве конечного продукта не индивидуальный металл, а прочный металлид (напр., силициды РЗЭ), проводят М. в вакууме, вводят добавки для связывания компонентов шлака в прочные соед. (напр., Аl2 О 3 -в алюминаты при алюминотермии). Так, DG0 обр силицидов РЗЭ составляет ок. Ч 270 кДж/моль, поэтому DG0 р-ции алюминотермич. восстановления оксидов РЗЭ в присут. Si становится величиной отрицательной (рис. 2).
При проведении М. в вакууме восстанавливаемый металл переходит в пар, сдвигая тем самым равновесие р-ции вправо. Величина этого сдвига возрастает с повышением т-ры и понижением давления в системе и составляет 100-150 кДж в интервале т-р 1000-2000 К и давлении 1 Па. Напр., силикотермич. восстановление MgO (эндотермич. р-ции 2MgO + Si2Mg пap + SiO2) может протекать с образованием Mg при обычном давлении выше 2400 К, а в вакууме при 1600 К.
Механизм металлотермич. восстановления изучен недостаточно. Гетерог. р-ции М. протекают, как правило, между жидкой и твердой (напр., алюминотермич. восстановление оксидов) или жидкой и паровой фазами (магниетермич. восстановление TiCl4). Часто реагенты находятся в двух агрегатных состояниях; напр., Са при кальциетермии реагирует как в жидком, так и в парообразном состоянии.
Среди металлотермич. процессов наиб. распространена алюминотермия. Этим методом получают сплавы большинства технически важных металлов (Nb, Ti, W, Zr, РЗЭ, Сг, Ва, Са, V, Та, Sr), к-рые используют для легирования сталей, чугунов и цветных металлов и как исходные материалы для произ-ва самих металлов. Алюминотермич. процессы подразделяют на 3 осн. группы: процессы, в к-рых благодаря экзотермич. эффекту р-ции выделяется тепла больше, чем необходимо для нормального протекания р-ции (расплавления всех компонентов, разделения металлич. и шлаковой фаз в результате разности в плотностях расплавов); процессы, в к-рых тепла выделяется больше, чем необходимо для расплавления продуктов р-ции, но недостаточно для покрытия тепловых потерь; процессы, в к-рых тепло выделяется в недостаточном кол-ве для расплавления продуктов р-ции.
Процессы первой группы проводят внепечным методом. Перемешанную шихту загружают в горн и поджигают запалом из стружки Mg. Плавку проводят как с выпуском металла, так и без (плавка на "блок"). Средняя продолжительность такого процесса (на 4-6 т шихты) 15-20 мин. Степень извлечения металла ок. 70-80%. Шлак и металл разделяют либо механически после остывания, либо путем раздельного выпуска. Внепечным методом получают легковосстанавливаемые металлы (V, Nb и др.), а также лигатуры, содержащие относительно трудновосстанавливаемые металлы.
Рис. 2. Температурная зависимость DG0 восстановления оксидов La и Y алюминием.
Процессы второй группы проводят также в горне. Дополнит. тепло, необходимое гл. обр. для компенсации потерь на нагрев стенок горна, получают путем введения термитных добавок-смесей порошка Аl с оксидами металлов (напр., NiO), при взаимод. к-рых выделяется большое кол-во тепла.