Поиск в словарях
Искать во всех

Математическая энциклопедия - астрономии математические задачи

Астрономии математические задачи

математические задачи, возникающие при исследованиях небесных объектов. Для решения ряда таких задач разработаны специальные методы, к-рые нашли применение и в других разделах науки. С другой стороны, в астрономии широко используется математический аппарат, созданный для решения сугубо "земных" задач, в необходимых случаях модифицированный должным образом.

Астрономия комплексная наука, исследующая небесные тела и их системы с различных, порой чрезвычайно далеких друг от друга, точек зрения. Это обусловливает и весьма широкий круг А. м. з.

Важным разделом астрономии является астрометрия, одна из основных задач которой состоит в определении опорной инерциальной системы координат в пространстве.

Традиционно используемые в астрономии, геодезии и других разделах науки координатные системы, связанные с плоскостью земного экватора п направлением на точку весеннего равноденствия (т. е. прямой пересечения плоскости земного экватора с плоскостью эклиптики), отнюдь не являются пнерциаль-ньши и не могут быть строго зафиксированы в пространстве из-за непрерывного сложного движения обеих упомянутых плоскостей (вследствие прецессии, нутации, движения земных полюсов). Для сравнимости координаты небесных светил относят, обычно, к положению плоскости экватора и точки весеннего равноденствия в нек-рую фиксированную дату ("эпоху"), причем саму определенную таким образом координатную систему фиксируют наиболее тщательно измеренными координатами нек-рого количества звезд, занесенными в специальные каталоги (фундаментальные звездные каталоги). Однако остается существенная трудность: для восстановления такой координатной системы в момент, отличный от эпохи каталога, необходимо знать, как изменятся вследствие собственных движений положения фундаментальных звезд относительно системы координат. Для преодоления этой трудности, начиная с середины 20 в., инерциальную систему координат стремятся определить относительно далеких галактик, собственные движения к-рых исчезающе малы. В связи с этим в астрометрии особенно большое значение приобретают математические задачи вычисления наиболее вероятных значений параметров, определяющих направления на небесное светило, из многократных наблюдений, а также оценка вероятностных характеристик этих значений. Решение этой задачи характерно и для большинства других разделов астрономии, поскольку астрономия в значительной мере является наукой наблюдательной.

С разнообразными математич. задачами сталкивается теоретич. астрофизика, к-рая на основе результатов наблюдений небесных объектов исследует их строение, происходящие в них физич. процессы, их эволюцию. Одной из главных проблем астрофизики является проблема строения и эволюции звезд. Теория внутреннего строения звезд приводит к дифференциальным уравнениям, описывающим условия механич. и энергетич. равновесия звезды. В частных случаях решения этих уравнений выражаются через элементарные функции; в большинстве же случаев уравнения (вследствие их сложности) решают численными методами.

Исследования звездных атмосфер, так же как и процессов, происходящих в туманностях и межзвезд-нон среде, основаны на математич. теории переноса излучения, получившей существенное развитие в астрофизике. В некоторых случаях, напр, при исследованиях прохождения излучения через плоский слой вещества, уравнение переноса излучения приводится к интегральным уравнениям, решение к-рых позволяет определить характеристики поля излучения внутри среды, а также излучения, выходящего из среды и доступного наблюдениям.

При изучении движения газовых масс в звездах и туманностях, процессов, связанных с расширением газовых облаков, столкновениями их друг с другом ц с межзвездной средой, широко используется математич. аппарат газодинамики и электродинамики.

В звездной астрономии, предметом к-рой является изучение закономерностей строения, динамики и эволюции звездных систем, используются математич. зависимости, связывающие распределение тех или иных истинных характеристик звездной системы (так наз. функций распределения) с распределением наблюдаемых характеристик. Так напр., изучение зависимостей (при нек-рых дополнительных допущениях) между функциями распределения звезд по расстоянию в нек-ром телесном угле и их абсолютными и видимыми величинами (получаемыми из наблюдений) приводит к интегральному уравнению, решение к-рого позволяет выяснить закономерности распределения звездной плотности в этом телесном угле. К таким же уравнениям приводит сопоставление функций распределения искомых пространственных скоростей звезд и наблюдаемых лучевых скоростей.

В звездной кинематике задача определения компонент скорости Солнца и характеристик вращения Галактики на основе статистич. исследований координат, собственных движений и лучевых скоростей звезд приводит к избыточной системе условных уравнений, составляемых для отдельных звезд (или для отдельных площадок неба). Математич. аппарат механики используется при решении задач звездной динамики, связанных с исследованием звездных скоплений, галактик и скоплении галактик. При этом отдельные объекты, составляющие систему, рассматриваются как материальные точки, взаимодействующие по закону тяготения, но с учетом спецпфич. особенностей, характерных для систем небесных тел. Решение задач небесной механики, изучающей движение небесных тел в гравитационном поле, приводит к системам дифференциальных уравнений движения. Решение наиболее общей задачи птел, в к-рой рассматривается движение пвзаимно притягивающихся тел для произвольных начальных условий, получается методом численного интегрирования. Однако этот метод дает удовлетворительное решение только на ограниченных интервалах времени и не позволяет делать заключения об эволюции системы тел. Более полно изучена частная задача трех тел с помощью рядов по степеням времени; однако эти ряды, крайне медленно сходящиеся, непригодны для приложения к исследованиям движений конкретных тел. Исследованы также нек-рые частные случаи задачи трех тел, десяти тел (Солнце и 9 больших планет) и др.

Задачи движения конкретных небесных тел решаются с помощью разложении в ряды по степеням малого параметра и при тех или иных допущениях, упрощающих решение.

Со специфическими дифференциальными уравнениями движения сталкивается астродинамика, изучающая движение искусственных небесных тел. В решениях задач движения искусственных спутников Земли приходится учитывать возмущающие силы, обусловленные несфернчностью Земли, сопротивлением атмосферы, световым давлением Солнца (в случае спутников-баллонов) н нек-рыми другими факторами.

Подробнее см. в статьях Астрометрии математические задачи, Астрофизики математические задачи. Звездной астрономии математические задачи, Классической небесной механики математические задачи.

Н. П. Ерпылев.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое астрономии математические задачи
Значение слова астрономии математические задачи
Что означает астрономии математические задачи
Толкование слова астрономии математические задачи
Определение термина астрономии математические задачи
astronomii matematicheskie zadachi это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):