Поиск в словарях
Искать во всех

Математическая энциклопедия - бейесовская оценка

Бейесовская оценка

оценка неизвестного параметра по результатам наблюдений при бейесовском подходе. При таком подходе к задачам статистич. оценивания обычно предполагается, что неизвестный параметр является случайной величиной с заданным (априорным) распределением пространство решений Dсовпадает с множеством , а потери отражают расхождение между значением и его оценкой d. Поэтому, как правило, считается, что функция имеет вид где некоторая неотрицательная функция от вектора погрешностей В случае часто полагают при этом наиболее употребительной и математически более удобной оказывается квадратичная функция потерь Для такой функции потерь Б. о. ( бейесовская решающая функция).. определяется как функция, на к-рой достигаются минимальные полные потери

или, что эквивалентно, минимальные условные потери

Отсюда следует, что в случае квадратичной функции потерь Б. о. совпадает с апостериорным средним: ,а бейесовский риск

где дисперсия апостериорного распределения:

Пример. Пусть

независимые одинаково распределенные случайные величины, имеющие нормальные распределения известно, а неизвестный параметр имеет нормальное распределение Поскольку апостериорное распределение для (при заданном х).является нормальным с

где то в случае квадратичной функции потерь бейесовская оценка ; а бейесовский риск равен .

А. Н. Ширяев.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое бейесовская оценка
Значение слова бейесовская оценка
Что означает бейесовская оценка
Толкование слова бейесовская оценка
Определение термина бейесовская оценка
beyesovskaya ocenka это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):