Поиск в словарях
Искать во всех

Математическая энциклопедия - бейесовский подход

Бейесовский подход

к статистическим задачам подход, основанный на предположении, что всякому параметру в статистич. проблеме принятия решения приписано нек-рое распределение вероятностей. Всякая общая статистич. проблема принятия решения определяется следующими элементами: пространством выборок , пространством значений неизвестного параметра , семейством распределений вероятностей на пространством решений п функцией , характеризующей потери от принятия решения d, когда истинное значение параметра есть . Цель же проблемы принятия решения состоит в отыскании в определенном смысле наилучшего правила (решающей функции), сопоставляющей каждому результату наблюдения . решение . При Б. п., когда считается, что неизвестный параметр 0 является случайной величиной с заданным (априорным) распределением , наилучшая решающая функция (бейесовская решающая функция) определяется как функция, на к-рой достигаются минимальные полные потери , где

а

Таким образом,

При отыскании бейесовской решающей функции полезным оказывается следующее замечание. Пусть где и некоторые s-конечные меры. Тогда, предполагая возможным смену порядков интегрирования, находим

Отсюда видно, что для данного есть то значение , на к-ром достигается

или, что эквивалентно,

где

Но по Бейеса формуле

Тем самым для данного есть то значение , на к-ром достигают минимума условные средние потери .

Тогда

откуда следует, что достигается на функции

Преимущество Б. п. состоит в том, что полные потери оказываются числом (в отличие от потерь , зависящих от неизвестного параметра ), и, следовательно, заведомо существуют, если и не оптимальные, то, по крайней мере, -оптимальные () решающие функции , для к-рых

Недостатком Б. п. является необходимость постулировать как существование априорного распределения для неизвестного параметра, так и знание его формы (в определенной степени последнее обстоятельство преодолевается в рамках бейесовского подхода эмпирического).

Лит.:[1] Вальд А., Статистические решающие функции, в сб.: Позиционные игры, М., 1967, с. 300-522; [2] Де Гроот М., Оптимальные статистические решения, пер. с англ., М., 1974.

А. Н. Ширяев.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое бейесовский подход
Значение слова бейесовский подход
Что означает бейесовский подход
Толкование слова бейесовский подход
Определение термина бейесовский подход
beyesovskiy podhod это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):