Математическая энциклопедия - делителей число
Связанные словари
Делителей число
функция натурального аргумента п. равная количеству натуральных делителей числа и. Эта арифметич. функция обозначается т(п), либо d(n). Известна формула:
где
канонич. разложение пна простые сомножители. Для простых рt(р)=2, но существует бесконечная последовательность п, для к-рых
Однако всегда
х(п)мультипликативная арифметическая функция;t(п)равно числу точек с натуральными координатами на гиперболе ху=п. Для среднего значения т(п) имеется асимптотич. формула Дирихле (см. Делителей проблемы). Обобщением функции t(n) является функция tk(n) -число решений уравнения п=х 1 х 2. .. х k в натуральных числах х 1, х 2,.., х k.
Лит.:[1] Виноградов И. М., Основы теории чисел, 8 изд., М., 1972.
Н. И. Климов.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985