Математическая энциклопедия - факториальное кольцо
Связанные словари
Факториальное кольцо
кольцо с однозначным разложением на множители. Точнее, Ф. к. Аэто область целостности, в к-рой можно выбрать систему экстремальных элементов . такую, что любой ненулевой элемент допускает единственное представление вида
где иобратим, а целые неотрицательные показатели (р)отличны от нуля только для конечного числа элементов При этом элемент наз. экстремальным в А, если из p=uv следует, что либо и, либо vобратим в А, и р необратим в А.
В Ф. к. существует наибольший общий делитель и наименьшее общее кратное любых двух элементов. Кольцо Афакториально тогда и только тогда, когда оно является кольцом Крулля и выполняется одно из следующих эквивалентных условий: (1) любой диви-зориальный идеал в . является главным; (2) любой простой идеал высоты 1 главный; (3) любое непустое семейство главных идеалов обладает максимальным элементом, н пересечение любых двух главных идеалов является главным идеалом. Любое кольцо главных идеалов факторнально. Дедекиндово кольцо факториально, только если оно кольцо главных идеалов. Если S - мультипликативная система в Ф. к. А, то кольцо частных S-1Aфакториально. Для кольца Зариского Rиз факториальности его пополнения Rследует факториальность самого R.
Подкольцо и факторкольцо Ф. к. не обязаны быть Ф. к. Кольцо многочленов над Ф. к. и кольцо формальных степенных рядов над полем или дискретно нормированным кольцом факториально. Однако кольцо формальных степенных рядов над Ф. к. не обязано быть факториальным.
Область целостности факториальна тогда и только тогда, когда ее мультипликативная полугруппа гауссова (см. Гауссова полугруппа), в связи с этим Ф. к, наз, также гауссовыми кольцами.
Лит.: [1] Бурбаки Н., Коммутативная алгебра, пер. с франц., М., 1971.
Л. В. Кузьмин.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985