Поиск в словарях
Искать во всех

Математическая энциклопедия - самосопряженное линейное преобразование

Самосопряженное линейное преобразование

линейное преобразование евклидова или унитарного пространства, совпадающее со своим сопряженным линейным преобразованием. В евклидовом пространстве С. л. п. наз. также симметрическим, а в унитарном пространстве эрмитовым. Необходимое и достаточное условие самосопряженности линейного преобразования конечномерного пространства состоит в том, что его матрица Ав произвольном ортонормированном базисе совпадает с сопряженной матрицей А*, т. е. является симметрич. матрицей (в евклидовом случае) или эрмитовой матрицей (в унитарном случае). Собственные значения С. л. п. действительны (даже в унитарном случае), а собственные векторы, отвечающие различным собственным значениям, ортогональны. Линейное преобразование конечномерного пространства Lявляется самосопряженным тогда и только тогда, когда в Lсуществует ортонормированный базис, состоящий из собственных векторов, и в этом базисе записывается действительной диагональной матрицей.

С. л. п. А наз. н е о т р и ц а т е л ь н ы м (или положительно полуопределенным), если для любого вектора х, и положительно определенным, если ( Ах, х)> 0 для любого вектора . Для неотрицательности (положительной определенности) нек-рого С. л. п. в конечномерном пространстве необходимо и достаточно, чтобы все его собственные значения были неотрицательны (соответственно положительны) или чтобы соответствующая ему матрица была положительно полуопределенной (соответственно положительно определенной). В этом случае существует единственное неотрицательное С. л. п. В, удовлетворяющее условию В 2=А квадратный корень из С. л. п. А.

А. Л. Онищик.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое самосопряженное линейное преобразование
Значение слова самосопряженное линейное преобразование
Что означает самосопряженное линейное преобразование
Толкование слова самосопряженное линейное преобразование
Определение термина самосопряженное линейное преобразование
samosopryazhennoe lineynoe preobrazovanie это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):