Поиск в словарях
Искать во всех

Математическая энциклопедия - валле пуссена производная

Валле пуссена производная

обобщенная симметрическая производная; определена Ш. Балле Пуссеном [1]. Пусть г четное и пусть существует такое, что для всех

где постоянные, при и Тогда число наз. производной Балле Пуссена порядка r, иначе симметрической производной порядка rфункции f в точке x0. Аналогично определяется В. П. п. нечетного порядка r с заменой равенства (*) на

В. П. п. совпадает со второй производной Римана, к-рую часто наз. производной Шварца. Если существует , то существует и ; при этом может не существовать. Если существует конечная обычная двусторонняя производная , то . Для функции , напр., и не существуют конечные Если существует В. П. п. , то ряд , полученный из ряда Фурье функции f почленным дифференцированием r раз, суммируем в точке методом при [2] (см. Чезаро методы суммирования).

Лит.:[1] Lа ValleеPoussin С h. J., "Bull. Acad. de Belgique", 1908, t. 3, p. 193-254; [2] Зигмунд А., Тригонометрические ряды, пер. с англ., М., 1965, гл. 11.

А. А. Конюшков.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое валле пуссена производная
Значение слова валле пуссена производная
Что означает валле пуссена производная
Толкование слова валле пуссена производная
Определение термина валле пуссена производная
valle pussena proizvodnaya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):