Математическая энциклопедия - абелева группа
Связанные словари
Абелева группа
разрешимости алгебраич. уравнений в радикалах. Обычно для обозначения операции в А. г. используется аддитивная запись, т. е. знак + для самой операции, наз. сложением, знак 0 для нейтрального элемента, наз. нулем (в мультипликативной записи он наз. единицей).
Примеры А. г. Все циклические группы - абе-левы, в частности аддитивная группа целых чисел абелева. А. г. будут всевозможные прямые суммы циклич. групп, аддитивная группа рациональных чисел Q(являющаяся локально циклической группой, т. е. группой, все конечно порожденные подгруппы к-рой циклические), группы типа (или квазициклич. группы где произвольное простое число).
Свободное объединение в многообразии А. г. совпадает с прямой суммой. Свободная абелева группа есть прямая сумма нек-рого множества бесконечных циклич. групп. Всякая подгруппа свободной А. г.свободная А. г. Совокупность всех элементов конечного порядка А. г. образует подгруппу, наз. периодической частью А. г. Факторгруппа А. г. по ее периодич. части является группой без кручения. Таким образом, всякая А. г.расширение периодич. А. г. при помощи А. г. без кручения. Это расширение не всегда расщепляемо, т. е. периодич. часть, вообще говоря, не выделяется в виде прямого слагаемого. Периодич. А. г., порядки всех элементов к-рой являются степенями фиксированного простого числа р, наз. примарной по простому числу p(в общей теории групп употребляется термин р-группа). Всякая периодич. А. г. может быть разложена, притом единственным способом, в прямую сумму примерных групп, относящихся к различным простым числам.
Наиболее полное описание известно для А. г. с конечным числом образующих. Его дает основная теорема об абелевых группах с конечным числом образующих: всякая конечно порожденная А. г. разлагается в прямую сумму конечного числа неразложимых циклич. подгрупп, из к-рых часть конечные примарные, часть бесконечные [Г. Фробениус (G. Frobenius), Л. Штиккельбергер (L. Stickelberger)]. В частности, конечная А. г. разложима в прямую сумму примарных циклич. групп. Такое разложение, вообще говоря, не единственно, но любые два разложения А. г. с конечным числом образующих в прямую сумму неразложимых циклич. групп изоморфны между собой и, таким образом, число бесконечных циклич. слагаемых и совокупность порядков примарных циклич. слагаемых не зависят от выбора разложения. Эти числа, наз. инвариантами конечно порожденной А. г., они являются полной системой инвариантов в том смысле, что всякие две группы, у к-рых эти инварианты совпадают, изоморфны. Всякая подгруппа А. г. с конечным числом образующих сама обладает конечной системой образующих.
Не всякая А. г. представима в виде прямой суммы (даже бесконечного числа) циклич. групп. Для примарных А. г. имеется необходимое и достаточное условие существования такого разложения критерий Куликова. Пусть А - примерная А. г. по нек-рому простому р. Ненулевой элемент агруппы Аназ. элементом бесконечной высоты в А, если для любого целого уравнение разрешимо в А, и элементом высоты n, если это уравнение разрешимо лишь для Критерий Куликова: примерная А. г. разложима в прямую сумму циклич. групп тогда и только тогда, когда она есть объединение возрастающей последовательности своих подгрупп, у каждой из к-рых высоты элементов ограничены в совокупности. Любая подгруппа А. г., разложимой в прямую сумму циклич. подгрупп, сама разложима в прямую сумму циклич. подгрупп. Неразложимые (в прямую сумму) примарные группы исчерпываются циклич. примерными группами и группами
Конечное множество элементов А. г. наз. линейно зависимым, если существуют текие целые числа не все равные нулю, что Если же теких чисел не существует, то это множество наз. линейно независимым. Произвольная системе элементов А. г. наз. линейно зависимой, если линейно зависима нек-рая конечная ее подсистема. А. г., не являющаяся периодической, обладает максимальными линейно независимыми системами. Мощности всех максимальных линейно независимых подсистем одинаковы и наз. рангом (Прюфера) данной А. г. Ранг периодич. группы считается равным нулю. Ранг свободной А. г. совпадает с мощностью системы ее свободных образующих.