Математическая энциклопедия - финитизм
Связанные словари
Финитизм
идущая от Д. Гильберта (D. Hilbert) методологич. точка зрения на то, какие объекты и способы рассуждений в математике следует считать абсолютно надежными. Основные требования Ф. таковы:
1) объекты рассуждений конструктивные объекты, напр. цифровые записи натуральных чисел, формулы в символич. языке и их конечные совокупности;
2) применяемые операции однозначно определены и принципиально выполнимы (вычислимы);
3) никогда не рассматривается множество всех предметов хкакой-либо бесконечной совокупности; всеобщее суждение (х)есть высказывание о произвольном объекте х, к-рое подтверждается в каждом конкретном случае;
4) утверждение о существовании объекта х, обладающего свойством (х), означает либо предъявление конкретного такого объекта, либо указание способа его построения.
Ограничения Ф. на логику близки к интуиционистским, хотя в целом финитная точка зрения является более жесткой. Рассуждение, удовлетворяющее требованиям 1) 4), не выводит за рамки интуиционистской арифметики (см. Интуиционизм).
После проведения формализации (см. Аксиоматический метод )содержательные математич. теории становятся конструктивными объектами (совокупностями конструктивных объектов). В рамках подхода Д. Гильберта и его последователей Ф. нужен для изучения таких формализованных теорий; надежно установленными считаются только те свойства теорий, к-рые доказаны финитными методами. Гёделя теорема о неполноте показала принципиальную недостаточность финитных средств для подобного обоснования математики. Это привело к необходимости расширить применяемые в теории доказательств средства за рамки Ф.
Лит.:[1] Клини С.