Математическая энциклопедия - шварца ядро
Связанные словари
Шварца ядро
в круге |z| <1 функция
Пусть D - конечная односвязная или многосвязная область с границей Г, функция Грина для оператора Лапласа в D, а действительная функция сопряженная с Тогда функция наз. комплексной функцией Грина области D. Функция аналитическая, но многозначная (если D многосвязна) функция от z и однозначная неаналитическая функция Функция
где v направление внутренней нормали в точке наз. ядром Шварца области D. Пусть F(z) = u(z)+iv(z)-аналитич. функция, не имеющая в Dособых точек, и -- однозначная и непрерывная в Тогда справедлива формула
где фиксированная точка, v(а) - значение в аодной из ветвей функции v(z).
Лит.:[1] Интегральные уравнении, М., 1968; [2] Михлин С. Г., Интегральные уравнения..., 2 изд., М.Л., 1949.
К. В. Хведелидзе.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985