Поиск в словарях
Искать во всех

Математическая энциклопедия - сплайн-интерполяция

Сплайн-интерполяция

интерполирование посредством сплайнов, т. е. построение интерполяционного сплайна (и. с.), принимающего в заданных точках {xi}заданные значения {f(xi)}, i=0, 1, . . ., n. Обычно и. с. удовлетворяют дополнительным условиям в концевых точках. Так, для кубического сплайна к-рый склеен на [ а, b]из кубических многочленов и имеет непрерывную 2-ю производную, требуют, чтобы и, кроме того, задают по одному условию в концевых точках, напр. и или и Если f(xi) значения (b-a )-периодической функции, то требуют, чтобы сплайн был также (b-а )-периодическим. Для полиномиальных сплайнов степени 2k+l число дополнительных условий в каждой из точек а и b увеличивается до k. Для и. с. степени 2k обычно узлы сплайна (точки разрыва 2k-й производной) выбираются посредине между точками {xi} и задается еще по kусловий в точках а к b.

С.-и. имеет нек-рые преимущества по сравнению с интерполированием многочленами; напр., существуют такие последовательности сеток

и и. с., для к-рых интерполяционный процесс сходится для любой непрерывной функции, если

Многие процессы С.-и. дают тот же порядок приближении, что и наилучшие приближения. Более того, при С.-и. нек-рых классов дифференцируемых функций погрешность не превосходит поперечника соответствующего класса. С.-и. дает решение нек-рых вариационных задач. Напр., и. с. при достаточно общих дополнительных условиях в точках а и b удовлетворяет соотношению

Из этого соотношения следует существование и единственность и. с. нечетной степени, а также простейшие результаты о сходимости:

i=0,1,..., т-1,где константа с i,т зависит только от i и m и Для нек-рых классов дифференцируемых функций последовательность и. с. сходится к интерполируемой функции на любой последовательности сеток для к-рой напр., это имеет место в случае (2).

Наряду с полиномиальными и. с. в С.-и. используются сплайны более общего вида (L-сплайны, Lq -сплайны). Для многих из них также справедливы аналоги равенства (1) и неравенств (2). Для сплайнов с дефектом, большим единицы, обычно рассматривается интерполирование с кратными узлами. См. также Сплайн-аппроксимация.

Лит.:см. при ст. Сплайн.

Ю. Н. Субботин.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое сплайн-интерполяция
Значение слова сплайн-интерполяция
Что означает сплайн-интерполяция
Толкование слова сплайн-интерполяция
Определение термина сплайн-интерполяция
splayninterpolyaciya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):