Математическая энциклопедия - аксиоматический метод
Связанные словари
Аксиоматический метод
способ построения научной теории, при к-ром в основу теории кладутся нек-рые исходные положения, наз. аксиомами теории, а все остальные предложения теории получаются как логич. следствия аксиом.
В математике А. м. зародился в работах древнегреческих геометров. Блестящим, остававшимся единственным вплоть до 19 в. образцом применения А. м. была геометрич. система, известная под назв. "Начал" Евклида (ок. 300 до н. э.). Хотя в то время не вставал еще вопрос об описании логич. средств, применяемых для извлечения содержательных следствий из аксиом, в системе Евклида уже достаточно четко проведена идея получения всего основного содержания геометрич. теории чисто дедуктивным путем из нек-рого, относительно небольшого, числа утверждений аксиом, истинность к-рых представлялась наглядно очевидной.
Открытие в нач. 19 в. неевклидовой геометрии Н. И. Лобачевским и Я. Больяй (J. Bolyai) явилось толчком к дальнейшему развитию А. м. Они установили, что, заменив привычный и, казалось бы, единственно "объективно истинный" V постулат Евклида о параллельных его отрицанием, можно развивать чисто логич. путем геометрич. теорию, столь же стройную и богатую содержанием, как и геометрия Евклида. Этот факт заставил математиков 19 в. обратить специальное внимание на дедуктивный способ построения математич. теорий, что повлекло за собой возникновение новой проблематики, связанной с самим понятием А. м., и формальной (аксиоматической) математич. теории. По мере того как накапливался опыт аксиоматич. изложения математич. теорий здесь надо отметить прежде всего завершение логически безупречного (в отличие от "Начал" Евклида) построения элементарной геометрии [М. Паш (М. Pasch), Дж. Пеано (G. Реаnо), Д. Гильберт (D. Hilbert)] и первые попытки аксиоматизации арифметики (Дж. Пеано),уточнялось понятие формальной аксиоматич. системы (см. ниже); возникала специ-фич. проблематика, на основе к-рой выросла так наз. доказательств теория как основной раздел современной математич. логики.
Понимание необходимости обоснования математики и конкретные задачи в этой области зародились в более или менее отчетливой форме уже в 19 в. При этом, с одной стороны, уточнение основных понятий и сведение более сложных понятий к простейшим на точной и логически все более строгой основе проводились гл. обр. в области анализа [ О. Коши (A. Cauchy), теоретико-функциональные концепции Б. Больцано (В. Bolzano) и К. Вейерштрасса (К. Weierstrass), континуум Г. Кантора (G. Cantor) и Р. Дедекинда (R. Dedekind)]; с другой стороны, открытие неевклидовых геометрий стимулировало развитие А. м., возникновение новых идей и постановку проблем более общего метаматематич. характера, прежде всего проблем, связанных с понятием произвольной аксиоматич. теории, таких, как проблемы непротиворечивости, полноты и независимости той или иной системы аксиом. Первые результаты в этой области принес метод интерпретаций, к-рый грубо может быть описан следующим образом. Пусть каждому исходному понятию и отношению данной аксиоматич. теории Т поставлен в соответствие нек-рый конкретный математич. объект. Совокупность таких объектов наз. полем интерпретации. Всякому утверждению теории Т естественным образом ставится теперь в соответствие нек-рое высказывание об элементах поля интерпретации, к-рое может быть истинным или ложным. Тогда говорят, что утверждение теории Т, соответственно, истинно или ложно в данной интерпретации. Поле интерпретации и его свойства сами обычно являются объектом рассмотрения к.-л., вообще говоря другой, математич. теории T1, к-рая, в частности, тоже может быть аксиоматической. Метод интерпретаций следующим образом позволяет устанавливать факт относительной непротиворечивости, т. е. доказывать суждения типа: "если теория Т 1 непротиворечива, то непротиворечива и теория Т". Пусть теория Т проинтерпретирована в теории Т 1 таким образом, что все аксиомы теории Т интерпретируются истинными суждениями теории Т 1. Тогда всякая теорема теории Т, т. е. всякое утверждение А, логически выведенное из аксиом в Т, интерпретируется в Т 1 нек-рым утверждением , выводимым в Т 1 из интерпретаций аксиом А i , и, следовательно, истинным. Последнее утверждение опирается на еще одно неявно делаемое нами допущение известного подобия логич. средств теорий Т и T1, но практически это условие обычно выполняется. (На заре применения метода интерпретаций об этом допущении специально даже не задумывались: оно представлялось само собой разумеющимся; на самом деле в случае первых опытов доказательства теорем об относительной непротиворечивости логич. средства теорий Т и T1 просто совпадали это была классич. логика предикатов.) Пусть теперь теория Т противоречива, т. е. нек-рое утверждение Аэтой теории выводимо в ней вместе со своим отрицанием. Тогда из вышесказанного следует, что утверждения и будут одновременно истинными утверждениями теории Т 1 т. е., что теория T1 противоречива. Этим методом была, напр., доказана [Ф. Клейн (F. Klein), А. Пуанкаре (Н. Poincare)] непротиворечивость неевклидовой геометрии Лобачевского в предположении, что непротиворечива геометрия Евклида; а вопрос о непротиворечивости гильбертовой аксиоматизации евклидовой геометрии был сведен (Д. Гильберт) к проблеме непротиворечивости арифметики. Метод интерпретаций позволяет также решать вопрос о независимости систем аксиом: для доказательства того, что аксиома Атеории Т не зависит от остальных аксиом этой теории, т. е. не выводима из них, и, следовательно, существенно необходима для получения всего объема данной теории, достаточно построить такую интерпретацию теории Т, в к-рой аксиома Абыла бы ложна, а все остальные аксиомы этой теории истинны. Иной формой этого способа доказательства независимости Аявляется установление непротиворечивости теории, к-рая получается, если в данной теории Таксиому Азаменить ее отрицанием. Упомянутое выше сведение проблемы непротиворечивости геометрии Лобачевского к проблеме непротиворечивости евклидовой геометрии, а этой последней к вопросу о непротиворечивости арифметики имеет своим следствием утверждение, что постулат Евклида не выводим из остальных аксиом геометрии, если только непротиворечива арифметика натуральных чисел. Слабая сторона метода интерпретаций состоит в том, что в вопросах непротиворечивости и независимости систем аксиом он дает возможность получать результаты, носящие неизбежно лишь относительный характер. Но важным достижением этого метода стал тот факт, что с его помощью была выявлена на достаточно точной основе особая роль арифметики как такой математич. теории, к вопросу о непротиворечивости к-рой сводится аналогичный вопрос для целого ряда других теорий.
Дальнейшее развитие а в известном смысле это была вершина А. м. получил в работах Д. Гильберта и его школы в виде так наз. метода формализма в основаниях математики. В рамках этого направления была выработана следующая стадия уточнения понятия ак-сиоматич. теории, а именно понятие формальной системы. В результате этого уточнения оказалось возможным представлять сами математич. теории как точные математич. объекты и строить общую теорию, или метатеорию, таких теорий. При этом соблазнительной представлялась перспектива (и Д. Гильберт был в свое время ею увлечен) решить на этом пути все главные вопросы обоснования математики. Основным понятием этого направления является понятие формальной системы. Всякая формальная система строится как точно очерченный класс выражений формул, в к-ром нек-рым точным образом выделяется подкласс формул, наз. теоремами данной формальной системы. При этом формулы формальной системы непосредственно не несут в себе никакого содержательного смысла, и их можно строить из произвольных, вообще говоря, значков или элементарных символов, руководствуясь только соображениями технического удобства. На самом деле способ построения формул и понятие теоремы той или иной формальной системы выбираются с таким расчетом, чтобы весь этот формальный аппарат можно было применять для выражения, возможно более адекватного и полного, той или иной конкретной математической (и не математической) теории, точнее, как ее фактич. содержания, так и ее дедуктивной структуры. Общая схема построения (задания) произвольной формальной системы Sтакова.
I. Язык системы S:
а) алфавитперечень элементарных символов системы;
б) правила образования (синтаксис) правила, по к-рым из элементарных символов строятся формулы системы S;при этом последовательность элементарных символов считается формулой тогда и только тогда, когда она может быть построена с помощью правил образования.
II. Аксиомы системы S. Выделяется нек-рое множество формул (обычно конечное или перечислимое), к-рые наз. аксиомами системы S.
III. Правила вывода системы S. Фиксируется (обычно конечная) совокупность предикатов на множестве всех формул системы S. Пусть к.-л. из этих предикатов если для данных формул утверждение истинно, то говорят, что формула непосредственно следует из формул по правилу