Математическая энциклопедия - центра и фокуса проблема
Связанные словари
Центра и фокуса проблема
проблема определения условии, при к-рых все траектории автономной системы обыкновенных дифференциальных уравнений
в нек-рой окрестности равновесия положения О, за исключением точки О, являются замкнутыми кривыми. Функции Xи Yпредполагаются голоморфными в нек-рой окрестности точки О. Проблема поставлена А. Пуанкаре (H. Poincarе, [1]). Основополагающие результаты получены А. М. Ляпуновым [2].
Обычно предполагают, что характеристич. уравнение линеаризованной в точке Осистемы, т. е. системы
имеет чисто мнимые корни. Тогда особая точка Оявляется для системы (*) либо центром (окружена замкнутыми траекториями), либо фокусом (окружена спиралями). В этом случае необходимое и достаточное условие существования центра заключается в том. что система (*) должна иметь не зависящий от tдействительный голоморфный в окрестности точки Оинтеграл F(x,у)=С (см.[2]). На основе этого результата разработаны методы составления условий наличия центра; такие условия представляют собой равенство нулю бесконечной последовательности многочленов от коэффициентов разложений в ряды правых частей системы (*). В случае полиномиальных правых частей из теоремы Гильберта о конечности базиса полиномиальных идеалов следует, что существенных условий в указанной последовательности лишь конечное число, а остальные являются их следствиями. Задача установления числа существенных условий центра является весьма сложной и полностью решена лить в случае, когда Xи Yявляются многочленами 2-й степени (три условия). В случае многочленов более высокой степени разработаны методы установления условий наличия центров определенной структуры: изохронных, устойчивых, симметричных (см. [3], [4]).
Лит.:[1] Пуанкаре А., О кривых, определяемых дифференциальными уравнениями, пер. с франц., М., 1947; [2] Ляпунов А. М., Общая задача об устойчивости движении, М.-Л., 1950; [3] Амелькин В. В., лДифференц. уравнения
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985