Поиск в словарях
Искать во всех

Математическая энциклопедия - дробно-линейное отображение

Дробно-линейное отображение

дробно-линейное преобразование,отображение комплексного пространства С-n, осуществляемое дробно-линейными функциями.

В случае комплексной плоскости С 1=С это отличное от константы отображение вида

где ad-bс неравно 0;часто применяется унимодулярная нормировка ad-=1. Всякое Д.-л. о. доопределяется соответствиями и до взаимно однозначного отображения расширенной плоскости С на себя. Простейшими среди Д.-л. о. являются линейные: получающиеся при с=0. Всякое нелинейное Д.-л. о. представимо в виде суперпозиции двух линейных отображений и отображения L0:Свойства Д.-л. о. L0 становятся наглядными на Римана сфере, так как при стереографич. проекции ему соответствует поворот сферы на 180° вокруг диаметра, проходящего через образы точек

Основные свойства. Д.-л. о. отображает взаимно однозначно и конформно С на себя. Круговое свойство: при Д.-л. о. любая окружность на С (т. е. окружность на С или прямая, пополненная точкой бесконечности) переходит в окружность на С. Инвариантность отношения симметрии двух точек: пара точек z, z*, симметричных относительно какой-либо окружности на при Д.-л. о. переходит в пару точек w, w*, симметричных относительно образа этой окружности. Двойное отношение четырех точек на С инвариантно относительно Д.-л. о., т. е. если точки x1, x2, x3,x4 при Д.-л. о. переходят соответственно в z1,z2, z3, z4, то

Для любых заданных троек x1, x2,x3 и z1, z2, z3, попарно различных точек на С, существует и притом только одно Д.-л. о., переводящее соответственно k=1, 2, 3.

Это Д.-л. о. можно найти из уравнения (2), подставляя в него zи wсоответственно вместо x4 и z4. Групповое свойство: совокупность всех Д.-л. о. образует некоммутативную группу относительно суперпозиции (L1L2)(z) = L1(L2(z)) с единицей E(z) = z. Свойство универсальности: всякий конформный автоморфизм С есть Д.-л. о., и, таким образом, группа всех Д.-л. о. совпадает с группой Aut С всех конформных автоморфизмов С.

Все конформные автоморфизмы единичного круга . образуют подгруппу Aut Вгруппы Aut С, состоящую из Д.-л. о. вида:

Так же обстоит дело с конформными автоморфизмами верхней полуплоскости {zОC; Im z>0}, имеющими вид:

Все конформные гомеоморфизмы верхней полуплоскости на единичный круг имеют, вид:

Исключив тождественное Д.-л. о. E(z), можно сказать, что Д.-л. о. имеет не более двух различных неподвижных точек x1, x2 на С. В случае двух различных неподвижных точек семейство окружностей 2, проходящих через x1 и x2, переводится Д.-л. о. (1) само в себя. При этом семейство е' всех окружностей, ортогональных к окружностям е, также переходит само в себя. Здесь возможны в свою очередь три случая.

1) Каждая окружность е переходит сама в себя; такое Д.-л. о. наз. гиперболическим, и оно представимо в нормальной форме:

где множитель Д.-л. о. m>0, Унимодулярное Д.-л. о. (1) является гиперболическим тогда и только тогда, когда и |a+d|>2.

2) Каждая окружность 2' переходит сама в себя; такое Д.-л. о. наз. эллиптическим ив нормальной форме (3) характеризуется множителем m таким, что |m| = 1, Унимодулярное Д.-л. о. (1) является эллиптическим тогда и только тогда, когда

|a+d|<2.

3) Ни одна из окружностей семейств 2 и 2' не переходит сама в себя; такое Д.-л. о. называется локсодромическим и в нормальной форме (3) характеризуется множителем таким, что либо

либо m<0. Унимодулярное Д.-л. о. (1) является локсодромическим тогда и только тогда, когда

Если же две неподвижные точки сливаются в одну x1, то Д.-л. о. наз. параболическим. Семейство 2 состоит при этом из всех окружностей, имеющих в x1 общую касательную; каждая окружность 2 переходит сама в себя. Нормальная форма параболичД.-л. о. имеет вид либо

при либо

при Унимодулярное Д.-л. о. (1) является параболическим тогда и только тогда, когда a+d=

Благодаря перечисленным богатым элементарным свойствам, Д.-л. о. находят самое широкое применение во всех разделах теории функций комплексного переменного и в различных прикладных дисциплинах. В частности, Д.-л. о. позволяют построить модель Лобачевского геометрии.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое дробно-линейное отображение
Значение слова дробно-линейное отображение
Что означает дробно-линейное отображение
Толкование слова дробно-линейное отображение
Определение термина дробно-линейное отображение
drobnolineynoe otobrazhenie это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):