Поиск в словарях
Искать во всех

Математическая энциклопедия - грина отношения эквивалентности

Грина отношения эквивалентности

на полугруппе бинарные отношения заданные следующим образом: означает, что хи у порождают совпадающие левые главные идеалы; и имеют аналогичный смысл с заменой "левые" на "правые" и "двусторонние" соответственно; (объединение в решетке отношений эквивалентности); . Отношения перестановочны в смысле умножения бинарных отношений, так что совпадает с их произведением. Отношение является правой конгруэнцией, т. е. стабильно справа: влечет для любого с;отношение есть левая конгруэнция (стабильно слева). -класс и -класс пересекаются тогда и только тогда, когда они лежат в одном и том же -классе. Все -классы, лежащие в одном -классе, равномощны. Если -класс содержит регулярный элемент, то все элементы из регулярны, причем вместе с любым своим элементом содержит и все инверсные к нему; такой -класс наз. регулярным. В регулярном -классе каждый -класс и каждый -класс содержит идемпотент. Если Нпроизвольный -класс, то либо Нявляется группой (это имеет место тогда и только тогда, когда Несть максимальная подгруппа данной полугруппы), либо . Все групповые -классы из одного и того же -класса суть изоморфные группы. В общем случае , но, напр., если нек-рая степень каждого элемента полугруппы Sлежит в подгруппе (в частности, если S периодическая полугруппа), то . Отношение включения главных левых идеалов естественным образом определяет отношение частичного порядка на множестве -классов; аналогично, для -классов и -классов. Рассматриваемые отношения были введены Дж. Грином [1].

Лит.:[1] Green J., "Ann. Math.", 1951, v. 54, p. 163172; [2] Ляпин Е. С., Полугруппы, М., 1960; [3] Клиффорд А., Престон Г., Алгебраическая теория полугрупп, пер. с англ., тт. 1 и 2, М., 1972; [4] Алгебраическая теория автоматов, языков и полугрупп, пер. с англ., М., 1975; [5] Hofmann К., Mostert P., Elements of compact semigroups, Columbus (Ohio), 1966. Л. Н. Шеврин.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое грина отношения эквивалентности
Значение слова грина отношения эквивалентности
Что означает грина отношения эквивалентности
Толкование слова грина отношения эквивалентности
Определение термина грина отношения эквивалентности
grina otnosheniya ekvivalentnosti это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):