Математическая энциклопедия - группа сусловием конечности
Связанные словари
Группа сусловием конечности
группа, элементы или подгруппы к-рой удовлетворяют тому или иному условию конечности. Под условием конечности в теории групп понимается любое такое свойство, присущее всем конечным группам, что существуют бесконечные группы, к-рые им не обладают. Наиболее важными в теоретико-групповых исследованиях являются следующие условия конечности: конечность убывающих цепей подгрупп (условие минимальности для подгрупп, см.
Артинова группа), конечность возрастающих цепей подгрупп (условие максимальности для подгрупп, см. Нётерова группа), конечная порож-денность, конечность порядков элементов (периодичность), конечность конечно порожденных подгрупп (локальная конечность, см. Локально конечная группа), конечность ранга, конечность классов сопряженных элементов.
Систематич. изучение Г. .