Математическая энциклопедия - радикал
Связанные словари
Радикал
группы G наибольшая нормальная подгруппа группы G, принадлежащая данному радикальному классу групп. Класс групп наз. радикальным, если он замкнут относительно гомоморфных образов, а также относительно "бесконечных расширений", т. е. если классу обязана принадлежать всякая группа, обладающая возрастающим нормальным рядом с факторами из данного класса (см. Нормальный ряд). Во всякой группе имеется наибольшая радикальная нормальная подгруппа радикал. Факторгруппа по Р. является полупростой группой, т. е. имеет единичный радикал.
Примером радикального класса является класс групп, обладающих возрастающим субнормальным рядом с локально нильпотентными факторами. Иногда термин "Р." используется именно применительно к наибольшей локально нильпотентной нормальной подгруппе (в случае конечных групп -это нильпотентный Р., или подгруппа Фиттинга). Важнейшим Р. в конечных группах является разрешимый Р. (см. Разрешимая группа). Конечные группы, имеющие тривиальный разрешимый Р., допускают нек-рое описание в терминах простых групп и их групп автоморфизмов (см. [1]).
Лит.:[1] К у р о ш А. Г., Теория групп, 3 изд., М., 1967.
А. Л. Шмелъкин.
В классе групп Ли радикалом наз. наибольшую связную разрешимую нормальную подгруппу. В любой группе Ли Gсуществует радикал R, причем R - замкнутая подгруппа Ли в G. Если H нормальная подгруппа Ли в G, то группа G/H полупроста (см. Ли полупростая группа).тогда и только тогда, когда Подалгебра алгебры Ли группы Ли G, соответствующая Р., совпадает с Р. алгебры Ли
Радикал алгебраической группы наибольшая связная разрешимая нормальная подгруппа алгебраич. группы G, всегда замкнутая в G. Радикал H(G).линейной алгебраич. группы Gсовпадает со связной компонентой единицы в пересечении всех Бореля подгрупп группы G;он является наименьшей из таких замкнутых нормальных подгрупп H, что группа G/H полупроста (см. Полупростая алгебраическая группа). Множество R(G)n всех унипотентных элементов в R(G).есть связная унипотентная замкнутая нормальная подгруппа в G, являющаяся наибольшей среди всех связных унипотентных нормальных подгрупп. Эта подгруппа наз. унипотентным радикалом г р у п п ы Gи может быть охарактеризована как наименьшая из таких замкнутых нормальных подгрупп Н в G, что G/H редуктивна. А. Л. Онищик.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985