Математическая энциклопедия - радикальная ось
Связанные словари
Радикальная ось
совокупность точек плоскости, имеющих относительно двух неконцентрич. окружностей x2+y2 2a1x -2b1y -2c1=0, x2+y2 2a2x2b2y 2c2 = 0 одинаковую степень точки. Уравнение Р. о.: (a2 a1)x +(b2 b1) y +(c2 c1).0.
Р. о. двух непересекающихся окружностей проходит вне окружностей и перпендикулярна прямой, проходящей через их центры (иногда принимают, что Р. о.
концентрич. окружностей является несобственная прямая). Р. о. двух пересекающихся окружностей является прямая, проходящая через точки их пересечения; а Р. о. двух касающихся окружностей их общая касательная. Для любых трех окружностей с неколлинеарными центрами Р. о. каждой пары окружностей проходят через одну точку (радикальный центр).
А. Б. Иванов.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985