Поиск в словарях
Искать во всех

Математическая энциклопедия - банахово аналитическое пространство

Банахово аналитическое пространство

бесконечномерное обобщение понятия аналитнч. пространства, возникшее в связи с изучением деформаций аналитических структур. Локальной моделью здесь служит банахово аналитическое множество, т. е. подмножество открытого множества Uв банаховом пространстве Е над С, где f : аналитическое отображение в банахово пространство F. В отличие от конечномерного случая, на локальной модели задается не один структурный пучок, а набор пучков Ф(W), где W - открытое множество в произвольном банаховом пространстве G. При этом Ф (G) определяется как фактор пучка ростков аналитич. отображений по подпучку ростков отображений вида где : локальное аналитич. отображение, а порождается отображениями, принимающими значения в W. Пучки определяют функтор из категории K открытых множеств банаховых пространств и их аналитич. отображений в категорию пучков множеств на

Банаховым аналитическим пространством наз. топологич. пространство X, снабженное функтором из категории Кв категорию пучков множеств на X, каждая точка к-рого имеет окрестность, изоморфную нек-рой локальной модели.

Комплексные аналитич. ространства образуют полную подкатегорию в категории банаховых аналитич. ространств. Б. а. п. конечномерно, если у каждой его точки хесть окрестность, изоморфная такой модели что существует отображение индуцирующее автоморфизм модели и имеющее вполне непрерывный дифференциал

Другой частный случай Б. а. п.банахово аналитическое многообразие, т. е. аналитич. ространство, локально изоморфное открытым подмножествам банаховых пространств. Важным примером является многообразие замкнутых и допускающих замкнутое дополнение линейных подпространств банахова пространства над С.

Конечя о определённые банаховы аналитические множества, т. е. модели вида обладают локальными свойствами, аналогичными классическим: для них имеют место примерное разложение, теорема Гильберта о нулях, теорема о локальном описании п др. (см. [2]).

Лит.:[1] Douady A., "Ann. Inst. Fourier", 1966, t. 16, № 1, p. 1-95: [2] Ramis J.-P., Sous-ensembles analytiques d'une varie4e banachique complexe, В.-Hdlb.N.Y., 1970.

Д. А. Пономарев.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое банахово аналитическое пространство
Значение слова банахово аналитическое пространство
Что означает банахово аналитическое пространство
Толкование слова банахово аналитическое пространство
Определение термина банахово аналитическое пространство
banahovo analiticheskoe prostranstvo это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):