Математическая энциклопедия - нерона-севери группа
Связанные словари
Нерона-севери группа
группа классов дивизоров по отношению алгебраич. эквивалентности на неособом проективном многообразии.
Пусть Xнеособое проективное многообразие размерности , определенное над алгебраически замкнутым полем группа дивизоров многообразия X, а подгруппа алгебраически эквивалентных нулю дивизоров. Факторгруппа наз. группой Нерона Север и много образия Xи обозначается NS (X). Теорема Нерона Север и утверждает, что абелева группа имеет конечное число образующих.
В случае Ф. Северн в цикле статей о теории базы (см., напр., [1]) предложил доказательство этой теоремы, использующее топологические и трансцендентные средства. Первое абстрактное доказательство (годное для поля kлюбой характеристики) принадлежит А. Нерону (см. [2] , [31, а также [4]).
Ранг группы NS (X)совпадает с алгебраич. числом Бетти группы дивизоров на X, т. е. с алгебраич. рангом многообразия X. Это число наз. также числом Пикара многообразия X. Элементы конечной периодич. подгруппы наз. делителями Севери, а порядок этой подгруппы числом Севери; группа является бирациональным инвариантом (см. [6]).
Имеются обобщения теоремы Нерона Севери на другие группы классов алгебраических циклов (см. [1] (классическая теория) и [7] (современная теория)).
Лит.:[11 Severi F., "Mem. Accad. Ital.", 1934, t. 5, p. 239-83; [2] Neron A., "Bull. Soc. math. France", 1952, t. 80, p. 101-66; [3] eго же, "Coll Geom. algebric. Liege", 1952, p. 119-26; [4] Lang S., Neron A., "Amer. J. Math.", 1959. v. 81, N 1, 95-118; [5] Hartshorne R., Algebraic geometry, N. Y., 1977; [6] Бальдассарри М., Алгебраические многообразия, пер. с англ., М., 1961; [7] Итоги науки и техники. Алгебра. Топология. Геометрия, т. 12, М., 1974, с. 77 -170.
В. А. Иековеких.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985