Поиск в словарях
Искать во всех

Математическая энциклопедия - повторный интеграл

Повторный интеграл

интеграл, в к-ром последовательно выполняется интегрирование по разным переменным, т. е. интеграл вида

(1)

Функция f(x, y).определена на множестве А, лежащем в прямом произведении XX Y пространств Xи У, в к-рых заданы s-конечные меры mx и my, обладающие свойством полноты; множество ("сечение" множества А), измеримое относительно меры m х;. множество А у (проекция множества Ав пространство Y), измеримое относительно меры m у. Интегрирование по (у).производится по мере (mx, а по А у - по мере my. Интеграл (1) обозначают также

К П. и. могут быть сведены кратные интегралы. Пусть функция f(x, у), интегрируемая по мере на множестве , продолжена нулем на все пространство , тогда П. и.

и

существуют и равны между собой:

(2)

(см. Фубини теорема). В левом интеграле внешнее интегрирование фактически производится по множеству . Таким образом, в частности, для точек множества (у).измеримы относительно меры m х. По всему множеству А у брать этот интеграл, вообще говоря, нельзя, т. к. при измеримом относительно меры m множества Амножество А у может оказаться неизмеримым относительно меры my, так же, как и отдельные множества (у),, могут быть неизмеримы относительно меры m х.

Множество же всегда измеримо относительно меры my, если только множество Аизмеримо относительно меры m.

Сформулированные условия возможности перемены порядка интегрирования в П. и. являются лишь достаточными, но не необходимыми: иногда перемена порядка интегрирования в П. и. допустима, а соответствующий кратный интеграл не существует.

Напр., для функции при x2+y2>0 и f(0, 0) = 0 П. и.

а кратный интеграл

не существует. Однако если существует хотя бы один из интегралов

или

то функция f интегрируема на множестве и справедливо равенство (2).

Для П. и. в случае, когда внутренний интеграл является интегралом Стилтьеса, а внешний интегралом Лебега, справедлива следующая теорема о перемене порядка интегрирования: пусть функция g(x, у). суммируема по уна [с, d]для всех значений хиз [ а, b]и является функцией ограниченной вариации по хна [ а, b]для почти всех значений . Пусть, далее, полная вариация функции g(x, у).но переменной хна [a, b]при всех указанных значениях уне превышает нек-рой неотрицательной и суммируемой на [с, d] функции. Тогда функция является функцией ограниченной вариации от переменной хна [а, b]и для любой непрерывной на [а, b]функции f(х).имеет место формула

Лит.:[1] Ильин В. А., Полняк Э. Г., Основы математического анализа, 2 изд., ч. 2, М., 1980; [2] Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 5 изд., М., 1981; [3] Кудрявцев Л. Д., Курс математического анализа, т. 2, М., 1981; [4] Никольский С. М., Курс математического анализа, 2 изд., т. 2, М., 1975; [5] Смирнов В. И., Курс высшей математики, т. 5, М., 1959. Л. Д. Кудрявцев.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое повторный интеграл
Значение слова повторный интеграл
Что означает повторный интеграл
Толкование слова повторный интеграл
Определение термина повторный интеграл
povtornyy integral это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):