Математическая энциклопедия - равномерная устойчивость
Связанные словари
Равномерная устойчивость
устойчивость по Ляпунову, равномерная относительно начального момента. Решение , системы дифференциальных уравнений
наз. равномерно устойчивым, если для всякого e>0 найдется d>0 такое, что для всякого и всякого решения х(t).той же системы, удовлетворяющих неравенству
выполнено неравенство
для всех
Устойчивая по Ляпунову неподвижная точка автономной системы дифференциальных уравнений , , равномерно устойчива, по устойчивое по Ляпунову решение, вообще говоря, может не быть равномерно устойчивым. Напр., решение , уравнения
(1)
при каждом устойчиво, но не равномерно устойчиво.
Пусть дана линейная система дифференциальных уравнений
(2)
где А(.) суммируемое на каждом отрезке отображение .
Для того чтобы решение x=0 системы (2) было равномерно устойчивым, необходимо, чтобы верхний особый показатель W0 (А).системы (2) был меньше или равен нулю. Напр., случае уравнения (1) верхний особый показатель W0(A)=1-a, а Ляпунова характеристический показатель . Для существования d>0 такого, чтобы решение x=0 всякой системы
удовлетворяющей условиям теоремы существования и единственности решения задачи Коши и условию |g(t,x)|<d.|x|, было равномерно устойчиво, необходимо и достаточно, чтобы верхний особый показатель W0(A). системы (2) был меньше нуля.
Лит.:[1] Персидский К., "Матем. сб.", 1933, т. 40, N5 3, с. 284-93; [2] Демидович Б. П., Лекции по математической теории устойчивости, М., 1967; [3] Далецкий Ю. Л., Крейн М. Г., Устойчивость решений дифференциальных уравнений в банаховом пространстве. М., 1970.
В. М. Миллионщиков.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985