Поиск в словарях
Искать во всех

Математическая энциклопедия - рисса неравенство

Рисса неравенство

1) Пусть {jn} ортонормированная система функций на отрезке [ а, b], почти всюду на [ а, b]для любого п.

а) Если , то ее коэффициенты Фурье

удовлетворяют н е р а в е н с т в у Р и с с а

б) Для любой последовательности , существует функция [ а, b], имеющая с п своими коэффициентами Фурье и удовлетворяющая н е р а в е н с т в у Р и с с а

2) Если , то сопряженная функция и справедливо н е р а в е н с т в о Р и с с а

где А р - постоянная, зависящая только от р.

Утверждение 1) впервые доказано Ф. Риссом [1], частные случаи этого утверждения ранее рассматривали У. Юнг (W. Young) и Ф. Хаусдорф (F. Hausdorf).

Утверждение 2) впервые доказано М. Риссом [2].

Лит.:[1] R i e s z F., "Math. Z.", 1923, Bd 18, S. 117-24; [2] R i e s z М., там же, 1927, Bd 27, S. 218-44; [3] Б а р и Н. К., Тригонометрические ряды, М., 1961, с. 211, 566; [4] З и г м у н д А., Тригонометрические ряды, пер. с англ., 2 изд., т. 1-2, М., 1965, с. 404 (т. 1), с. 154 (т. 2). Т. П. Лукашенко.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое рисса неравенство
Значение слова рисса неравенство
Что означает рисса неравенство
Толкование слова рисса неравенство
Определение термина рисса неравенство
rissa neravenstvo это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):