Поиск в словарях
Искать во всех

Математическая энциклопедия - свободная авелева группа

Свободная авелева группа

группа, свободная в многообразии всех абелевых групп (см. Свободная алгебра). Прямые суммы (в конечном или бесконечном числе) бесконечных циклич. групп и только они являются свободными группами в классе абелевых групп. При этом совокупность образующих элементов всех циклич. прямых слагаемых служит системой свободных образующих (называемой также б а з о й) С. а. г. Не всякая максимальная линейно независимая система элементов С. а. г. служит для нее базой. С. а. г. изоморфны тогда и только тогда, когда их базы равномощны. Мощность базы С. а. г. совпадает с рангом Прюфера этой группы. Всякая подгруппа С. а. г., отличная от нулевой, сама свободна. Абелева группа свободна тогда и только тогда, когда она обладает возрастающим рядом подгрупп (см. Подгрупп ряд), каждый фактор к-рого изоморфен бесконечной циклич. группе.

Лит.:[1] К у р о ш А. Г., Теория групп, 3 изд., М., 1967; [2] К а р г а п о л о в М. И., М е р з л я к о в Ю. И., Основы теории групп, 3 изд., М., 1982. О. А. Иванова.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое свободная авелева группа
Значение слова свободная авелева группа
Что означает свободная авелева группа
Толкование слова свободная авелева группа
Определение термина свободная авелева группа
svobodnaya aveleva gruppa это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):