Поиск в словарях
Искать во всех

Математическая энциклопедия - алгебраических систем многообразие

Алгебраических систем многообразие

алгебраических систем класс фиксированной сигнатуры и, аксиоматизируемый при помощи тождеств, т. е. формул вида

где к.-л. предикатный символ из или знак равенства, а термы сигнатуры Q от предметных переменных А. с. м. наз. иначе э к, вациональными классами, иногда примитивными классами. Многообразие сигнатуры может быть определено также (теорема Биркгофа) как непустой класс -систем, замкнутый относительно подсистем, гомоморфных образов и декартовых произведений.

Пересечение всех многообразий сигнатуры , содержащих данный (не обязательно абстрактный) класс -систем, наз. эквациональным замыканием класса (или многообразием, порожденным классом > и обозначается . В частности, если класс состоит из одной -системы , то его эквацп-ональное замыкание обозначают . Если система конечна, то все конечно порожденные системы в многообразии также конечны [1], [2].

Пусть нек-рый класс -систем, класс подсистем систем из класс гомоморфных образов систем из класс изоморфных копий декартовых произведений систем пз . Для произвольного непустого класса -систем имеет место соотношение (см. [1], [2]):

Многообразие наз. тривиальным, если в каждой его системе истинно тождество . Всякое нетривиальное многообразие обладает свободными системами любого ранга ти (см. [1], [2]). Пусть множество тождеств сигнатуры и класс всех -систем, в к-рых истинны все тождества из . Если для многообразия сигнатуры выполняется равенство , то наз. базисом для . Многообразие наз. конечно базируемы м, если оно имеет конечный базис . Для любой системы базис многообразия наз. также базисом тождеств системы . Если конечно базируемое многообразие алгебр конечной сигнатуры и все алгебры из имеют дистрибутивные решетки конгруэнции, то каждая конечная алгебра пз имеет конечный базис тождеств (см. [10]). В частности, любая конечная решетка обладает конечным базисом тождеств. Конечный базис тождеств имеет любая конечная группа [3]. Напротив, существует 6-элементная полугруппа [5] и 3-элементный группоид [6], у к-рых нет конечного базиса тождеств.

Многообразия -систем, содержащиеся в к.-л. фиксированном многообразии сигнатуры , составляют по включению полную решетку с нулем и единицей, к-рая наз. решеткой подмногообразий многообразия . Нулем этой решетки служит многообразие с базисом , а единицей многообразие . Если многообразие нетривиально, то решетка антиизоморфна решетке всех вполне характеристических конгруэнции свободной в системы счетного ранга [1]. Решетка всех многообразий сигнатуры бесконечна, кроме случая, когда множество конечно и состоит лишь из предикатных символов. Известно точное значение мощности бесконечной решетки (см. [1]). Решетка всех многообразий решеток дистрибутивна и имеет мощность континуума [7], [8]. Решетка всех многообразий групп модулярна, но не дистрибутивна [3], [4]. Решетка многообразий коммутативных полугрупп не модулярна [9].

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое алгебраических систем многообразие
Значение слова алгебраических систем многообразие
Что означает алгебраических систем многообразие
Толкование слова алгебраических систем многообразие
Определение термина алгебраических систем многообразие
algebraicheskih sistem mnogoobrazie это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):