Поиск в словарях
Искать во всех

Математическая энциклопедия - алгебраических многообразий арифметика

Алгебраических многообразий арифметика

арифметическая алгебраическая геометрия,направление в алгебраич. геометрии, изучающее свойства алгебраич. многообразий, определенных над полями так наз. арифметического типа, т. е. конечными, локальными и глобальными полями алгебраич. чисел или алгебраич. функций. В случае конечных полей основным является изучение числа рациональных точек алгебраич. многообразия в этих полях н их конечных расширениях. Используемая для такого изучения дзета-функция многообразия оказала большое влияние на развитие методов алгебра-нч. геометрии. Большое значение имеют также оценки числа точек снизу (см. [1], [4]).

Если X - алгебрапч. многообразие (или схема) над локальным полем К с полем вычетов k, то рассмотрение множества рациональных точек со значениями в А' позволяет связать две совершенно различные задачи: нахождение решений сравнений (пли точек многообразий над конечными нолями) и целочисленных или рациональных решений дпофантовых уравнений (см. Хассе принцип). Задавая многообразие Xсистемой уравнений с коэффициентами из кольца Ацелых элементов поля K, можно определить редукцию этого многообразия той же системой уравнений, но с коэффициентами, взятыми по модулю максимального идеала кольца А. Получаются "многообразие" над полем вычетов kи канонич. отображение, или редукция:

Приведенное описание редукции трудно объяснить в рамках классич. алгебраич. геометрии. Это явилось одной из причин введения понятия схем, на языке к-рых описанный процесс допускает строгое определение. Основная задача состоит в определении образа отображения Red, т. е. в нахождении тех точек к-рые поднимаются до рациональных K-точек многообразия; Гензеля лемма утверждает, что это так, если неособая точка. Наиболее общие результаты об этом см. [4].

Другим кругом вопросов, относящихся к локальной А. м. а., является изучение форм над такими полями. Пусть -форма от переменных степени над локальным полем; гипотеза Артина утверждает, что при уравнение имеет нетривиальное решение. В функциональном случае справедливость этого утверждения известна. Для -адпческих полей доказано, что для каждого имеется такое конечное число простых , что гипотеза Артина верна для форм степени d;если .

В 1966 было показано, что уже множество A(L).не пусто, тем самым гипотеза Артина была опровергнута (см. [4]). Неизвестно (1977), верна ли она для форм нечетной степени.

А. м. а. над глобальными полями представляет собой наиболее обширную и разветвленную область алгебраич. геометрии. Сюда относятся диофантова геометрия, теория полей классов, теории дзета-функций многообразий, комплексное умножение абелевых функций (или многообразий). Все эти теории развиваются параллельным образом для числовых и функциональных полей. Впервые такая возможность была продемонстрирована развитием теории полей классов в 30-х гг. 20 в., она основана на глубокой аналогии между этими полями, получившей наиболее полное воплощение в конструкциях теории схем.

Лит.: [1] Боревич 3. И., Шафаревич И. Р., Теория чисел, 2 изд., М., 1972; [2] Вейль А., "Математика", 1958, т. 2, № 4; [3] Grothendieck A., Dieudоnnе J., Elements de geometric algebrique I, B., 1971; [4] Итоги науки. Алгебра. Топология. Геометрия. 1970, М., 1971, с. 111 -152; [5] Swinnеrtоn Dуеr Н. Р. Р., в кн.: Proceedings of Symposia in pure mathematics, v. 20, 1969, Providence, 1971.

A. H. Паршин.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое алгебраических многообразий арифметика
Значение слова алгебраических многообразий арифметика
Что означает алгебраических многообразий арифметика
Толкование слова алгебраических многообразий арифметика
Определение термина алгебраических многообразий арифметика
algebraicheskih mnogoobraziy arifmetika это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):