Математическая энциклопедия - безгранично делимое распределение
Связанные словари
Безгранично делимое распределение
распределение вероятностей, к-рое при любом п=2,3, 4, ... может быть представлено как композиция (свертка) подинаковых распределений вероятностей. Определение Б. д. р. в равной степени применимо к распределениям на прямой, в конечномерных евклидовых пространствах и в нек-рых еще более общих случаях. Ниже рассматривается одномерный случай.
Характеристич. функции f(t).В. д. р. наз. безгранично делимыми. Каждая такая функция при любом пможет быть представлена как n-я степень некоторой другой характеристич. функции:
Примерами Б. д. р. могут служить нормальное распределение, Пуассона распределение, Коши распределение, "хu-квадрат" распределение. Проверять свойство безграничной делимости проще всего с помощью характеристич. функций. Композиция Б. д. р. и предел слабо сходящейся последовательности Б. д. р. суть снова Б. д. р.
Случайную величину, определенную на нек-ром вероятностном пространстве, наз. безгранично делимой, если при любом пона может быть представлена в виде суммы пнезависимых одинаково распределенных случайных величин, определенных на том же пространстве. Распределение каждой такой величины Б. д. р. Обратное не всегда верно. Так, если взять дискретное вероятностное пространство, образованное неотрицательными целыми числами m=0, 1, 2, ... с приписанными им пуассоновскими вероятностями
то случайная величина не будет безгранично делимой, хотя ее распределение вероятностей (распределение Пуассона) есть Б. д.