Математическая энциклопедия - лебега мера
Связанные словари
Лебега мера
в счетно-аддитивная мера являющаяся продолжением объема как функции n-мерных интервалов на более широкий класс множеств, измеримых по Лебегу. Класс содержит в себе класс борелевских множеств и состоит из множеств вида Не всякое подмножество Rn принадлежит Для любого .
где inf берется по всевозможным счетным семействам интервалов таким, что Формула (*) имеет смысл для каждого и определяет функцию множеств (совпадающую на ,), называемую внешней мерой Лебег а. Множество Апринадлежит тогда и только тогда, когда
для любого конечного интервала I; при всех
и при всех
если
то последнее равенство достаточно для
включения
Если О - ортогональный опепатоп в
для любого
Л. м. введена А. Лебегом [1].
Лит.:[1] Lebesgue H., "Ann. mat. pura ed appl.", (3) 1902, v. 7, p. 231;[2] Сакс С., Теория интеграла, пер. сангл., М., 1949; [3] X а л м о ш П., Теория меры, пер. с англ., М., 1953; [4] Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 5 изд., М., 1981. В. В. Сазонов.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985