Поиск в словарях
Искать во всех

Математическая энциклопедия - наименьшее общее кратное

Наименьшее общее кратное

наименьшее положительное из общих кратных целых, в частности натуральных, чисел . Н. о. к. чисел существует, если . Н. о. к. чисел обычно обозначают символом

Свойства Н: о. к.:

1) Н. о. к. чисел делитель любого общего кратного этих чисел;

2)

3) если целые числа представлены в виде

где различные простые,

и то

4) если где наибольший общий делитель для аи b.

Последнее свойство позволяет находить Н. о. к. двух чисел при помощи Евклида алгоритма. Понятие Н. о. к. может быть введено для элементов области целостности, а также для идеалов коммутативного кольца.

Лит.:[1] Виноградов И. М., Основы теории чисел, 9 изд., М., 1981; [2] Бухштаб А. А., Теория чисел, 2 изд., М., 1966; [3] Фор Р., Кофман А., Дени-Папен М., Современная математика, пер. с франц., М., 1966.

В. И. Нечаев, А. А. Бухштаб.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое наименьшее общее кратное
Значение слова наименьшее общее кратное
Что означает наименьшее общее кратное
Толкование слова наименьшее общее кратное
Определение термина наименьшее общее кратное
naimenshee obschee kratnoe это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):