Поиск в словарях
Искать во всех

Математическая энциклопедия - нелинейный функциональный анализ

Нелинейный функциональный анализ

один из разделов функционального анализа, изучающий нелинейные отображения ( нелинейные операторы )бесконечномерных векторных пространств, а также нек-рые классы нелинейных пространств и их отображения. Основными разделами Н. ф. а. являются следующие.

1) Дифференциальное исчисление нелинейных отображений банаховых, топологических векторных и нек-рых других более общих пространств, включая теоремы о локальном обращении дифференцируемого отображения и теорему о неявной функции.

2) Нахождение условий действия, непрерывности, компактности нелинейного оператора, действующего из одного бесконечномерного конкретного пространства в другое.

3) Принципы неподвижной точки для различных классов нелинейных операторов (сжимающих, компактных, уплотняющих, монотонных и др.); применение этих принципов для доказательства существования решений различных нелинейных уравнений.

4) Изучение нелинейных монотонных, вогнутых, выпуклых, имеющих монотонную миноранту и др. операторов в пространствах, наделенных структурой упорядоченного векторного пространства.

5) Исследование спектральных свойств нелинейных операторов (точки бифуркации, непрерывные ветви собственных элементов и пр.) в бесконечномерных векторных пространствах.

6) Приближенное решение нелинейных операторных уравнений.

7) Изучение пространств, линейных в малом, и банаховых многообразий глобальный анализ.

8) Исследование на экстремум нелинейных функционалов и вариационные методы изучения нелинейных операторов.

Лит.:[1] Вайнберг М. М., Вариационный метод и метод монотонных операторов в теории нелинейных уравнений, М., 1972; [2] Гаевский X., Грёгер К., 3ахариас К., Нелинейные операторные уравнения и операторные дифференциальные уравнения, пер. с нем., М., 1978; [3] Иллс Дж., "Успехи матем. наук", 1969, т. 24, в. 3, с. 157-210; [4] Красносельский М. А., Положительные решения операторных уравнений, М., 1962; [5] Красносельский М. А., Забрейко П. П., Геометрические методы нелинейного анализа, М., 1975; [6] Ленг С., Введение в теорию дифференцируемых многообразий, пер. с англ., т. 1, М., 1967; [7] Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965; [8] Ниренберг Л., Лекции по нелинейному функциональному анализу, пер. с англ., М., 1977; [9] Xилле Э., Филлипс Р., Функциональный анализ и полугруппы, пер. с англ., 2 изд., М., 1962.

В. И. Соболев.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое нелинейный функциональный анализ
Значение слова нелинейный функциональный анализ
Что означает нелинейный функциональный анализ
Толкование слова нелинейный функциональный анализ
Определение термина нелинейный функциональный анализ
nelineynyy funkcionalnyy analiz это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):