Поиск в словарях
Искать во всех

Математическая энциклопедия - нелинейные колебания

Нелинейные колебания

колебания в физич. системах, описываемые нелинейными системами обыкновенных дифференциальных уравнений

где содержит члены не ниже 2-й степени по компонентам вектора вектор-функция времени малый параметр (либо и ). Возможные обобщения связаны с рассмотрением разрывных систем, воздействий с разрывными характеристиками (напр., типа гистерезиса), запаздывания и случайных воздействий, интегро-дифференциальных и дифференциально-операторных уравнений, колебательных систем с распределенными параметрами, описываемыми дифференциальными уравнениями с частными производными, а также с использованием методов оптимального управления нелинейными колебательными системами. Основные общие задачи Н. к.: отыскание положений равновесия, стационарных режимов, в частности периодич. движений, автоколебаний и исследование их устойчивости, проблемы синхронизации и стабилизации Н. к.

Все физич. системы, строго говоря, являются нелинейными. Одна из наиболее характерных особенно--стей Н. к.это нарушение в них принципа суперпозиции колебаний: результат каждого из воздействий в присутствии другого оказывается иным, чем в случае отсутствия другого воздействия.

Квазилинейные системы системы (1) при . Основным методом исследования является малого параметра метод. Прежде всего это метод Пуанкаре Линдштедта определения переодич. решений квазилинейных систем, аналитических по параметру при его достаточно малых значениях, либо в виде рядов по степеням (см. [1] гл. IX), либо в виде рядов по степеням и добавок к начальным значениям компонент вектора (см. [1] гл. III). О дальнейшем развитии этого метода см., напр., в [2] [4].

Другим из методов малого параметра является метод осреднения. Вместе с тем в исследование квазилинейных систем проникали и новые методы: асимптотич. методы (см. [5], [6]), метод К-функций (см. [7]), базирующийся на фундаментальных результатах А. М. Ляпунова Н. Г. Четаева, и др.

Существенно нелинейные системы, в к-рых отсутствует заранее предписываемый малый параметр . Для систем Ляпунова

где

причем среди собственных чисел -матрицы нет кратных корню аналитич. вектор-функция х, разложение к-рой начинается с членов не ниже 2-го порядка, и имеет место аналитический первый интеграл специального вида, А. М. Ляпунов (см. [8] § 42) предложил метод отыскания периодич. решений в виде ряда по степеням произвольной постоянной с(за к-рую может быть принято начальное значение одной из двух крнтич. переменных либо ).

Для систем, близких к системам Ляпунова,

где того же вида, что и в (2), аналитич. вектор-функция и малого параметра , непрерывная и -периодическая по t, также предложен метод определения периодич. решений (см. [4] гл. VIII). Системы типа Ляпунова (2), в к-рых матрица имеет lнулевых собственных значений с простыми элементарными делителями, два чисто мнимых собственных значения и не имеет собственных значений, кратных такая же, как и в (2), могут быть сведены к системам Ляпунова (см. [9] IV.2). Исследовались также Н. к. в системах Ляпунова и в т. н. системах Ляпунова с демпфированием, а также решалась общая задача о перекачке энергии в них (см. [9] гл. I, III, IV).

Пусть существенно нелинейная автономная система приведена к жорданову виду ее линейной части

где вектор по предположению имеет хотя бы одну ненулевую компоненту; , равны нулю или единице соответственно при отсутствии пли наличии непростых элементарных делителей матрицы линейной части,коэффициенты; множество значений вектора с целочисленными компонентамп таково:

Тогда существует нормализующее преобразование:

приводящее (3) к нормальной форме дифференциальных уравнений

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое нелинейные колебания
Значение слова нелинейные колебания
Что означает нелинейные колебания
Толкование слова нелинейные колебания
Определение термина нелинейные колебания
nelineynye kolebaniya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):