Поиск в словарях
Искать во всех

Математическая энциклопедия - плоский морфизм

Плоский морфизм

морфизм схем такой, что для любой точки локальное кольцо является плоским над (см. Плоский модуль). Вообще, пусть пучок -модулей, он наз. плоским над Yв точке , если плоский модуль над кольцом . При нек-рых (довольно слабых) условиях конечности множество точек, в к-рых когерентный -модуль является плоским, открыто в X. Если при этом схема Yцелостна, то существует открытое непустое подмножество такое, что П. м. над Yво всех точках, лежащих над U.

П. м. конечного типа соответствуют интуитивному понятию непрерывного семейства многообразий. П. м. открыт и равноразмерен (т. е. размерность слоев f-1 (у) локально постоянна по ). Для многих гео-метрич. свойств множество точек , в к-рых слой f-1(f(x)).плоского морфизма обладает этим свойством, открыто в X. Если П. м. f собственный, то открытым является и множество точек , слои над к-рыми обладают этим свойством (см. [1]).

П. м. применяются также в теории спуска. Морфизм схем наз. строго плоским, если он плоский и сюръективный. Тогда, как правило, для проверки какого-либо свойства нек-рого объекта над Yдостаточно проверить это свойство для объекта, полученного после строго плоской замены базы (см. [1]). В связи с этим представляют интерес критерии плоскостности морфизма (или -модуля ); при этом Yможно считать локальной схемой. Простейший критерий относится к случаю, когда база Yодномерна и регулярна: когерентный -модуль будет плоским тогда и только тогда, когда униформизирующая на Yимеет тривиальный аннулятор в . Общий случай в нек-ром смысле сводится к одномерному. Пусть Y - приведенная нётерова схема и для любого морфизма , где Z - одномерная регулярная схема, замена базы является П. м.; тогда f есть П. м. Другой критерий плоскостности требует, чтобы был универсально открыт,

а Y и геометрич. слои приведены.

Лит.:[1] Grothendieck A., Dieudonne .Т., Elements de geometric algebrique, 4, "Publ. math. IHES", 1964, № 24; 1966, № 28; [2] Мамфорд Д., Лекции о кривых на алгебраической поверхности, пер. с англ., М., 1968; [3] Rауnaud M., GrusonL., "Invent, math.", 1971, v. 13, p. 1-89.

В. И. Данилов

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое плоский морфизм
Значение слова плоский морфизм
Что означает плоский морфизм
Толкование слова плоский морфизм
Определение термина плоский морфизм
ploskiy morfizm это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):