Математическая энциклопедия - тензорное расслоение
Связанные словари
Тензорное расслоение
Сечения Т. р. типа ( р, q )наз. тензорными полями типа ( р, q )и являются основным объектом исследования дифференциальной геометрии. Напр., риманова структура на М - это гладкое сечение расслоения T0,2 (М), значения к-рого являются положительно определенными симметрич. формами. Гладкие сечения расслоения Т р,q (М)образуют модуль Dp,q(M)над алгеброй гладких функций на М. Если М - паракомпактное хаусдорфово многообразие, то
где D1(M)=D1'0 (М)модуль гладких векторных полей, Dl (М)* = D0,1 (М) - модуль пфаффовых дифференциальных форм, а тензорные произведения берутся над В классической дифференциальной геометрии тензорные поля иногда наз. просто тензорамина М.
Лит.:[1] Кобаяси Ш., Номидзу К., Основы дифференциальной геометрии, т. 1, пер. с англ., М., 1981; [2] Xелгасон С., Дифференциальная геометрия и симметрические пространства, пер. с англ., М., 1964.
А. Л. Онищик.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985