Поиск в словарях
Искать во всех

Математическая энциклопедия - триортогональная системаповерхностей

Триортогональная системаповерхностей

множество поверхностей в трехмерном пространстве, распадающихся на три однопараметрич. семейства таким образом, что любые две поверхности различных семейств образуют прямой угол в каждой точке их пересечения. Предполагается, что входящие в Т. с. п. поверхности являются регулярными, в этом случае кривые, по к-рым пересекаются входящие в нее поверхности, являются линиями кривизны этих поверхностей (теорема Дюпена).

Т. с. ц. образуют системы координатных поверхностей в ортогональной координации пространства. Так, в сферич. системе координат Т. с. п. образуют: одно семейство сфер с общим центром в начале координат, второе семейство конусов вращения с вершиной в начале координат и с осью, через к-рую проходят плоскости третьего семейства координатных поверхностей. С каждой Т. с. п. может быть связана нек-рая ортогональная координация пространства. Линейный элемент пространства в ортогональных координатах и, v, w имеет вид

где Н i( и, v, w), i=1, 2,3,т. н. функции Ламе, для к-рых риманов тензор этой пространственной формы тождественно равен нулю. Этими функциями определяется Т. с. п. с точностью до движения (или отражения). С каждой регулярной поверхностью может быть связана Т. с. п., в состав к-рой она входит. Если задано однопараметрич. семейство регулярных поверхностей, входящее в состав Т. с. п., и если в этом семействе содержится хотя бы одна поверхность, отличная от плоскости или сферы, то вся Т. с. п. этим семейством вполне определяется.

Т. с. п. образуют софокусные поверхности поверхностей 2-го порядка в евклидовом пространстве; уравнение систем этих поверхностей в декартовой ортогональной системе координат имеет вид

где а, b, с - фиксированные величины, 0<с<b<а, параметр. При это уравнение определяет семейство эллипсоидов, при семейство одно-полостных гиперболоидов, а при семейство двуполостных гиперболоидов. Через каждую точку пространства проходят три поверхности этой системы: однополостный гиперболоид, двуполостный гиперболоид и эллипсоид. Автоморфизмами Т. с. п. в евклидовом пространстве являются сферич. преобразования.

Лит.:[1] Darbоux G., Lecons sur les systemes orthogonaux et les coordonnees curviligncs, 2 ed., P., 1910; [2] Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1-2, М.Л., 1947 48.

Л. А. Сидоров.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое триортогональная системаповерхностей
Значение слова триортогональная системаповерхностей
Что означает триортогональная системаповерхностей
Толкование слова триортогональная системаповерхностей
Определение термина триортогональная системаповерхностей
triortogonalnaya sistemapoverhnostey это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):