Математическая энциклопедия - трикоми задача
Связанные словари
Трикоми задача
в области ограниченной гладкой кривой с концами в точках А(0, 0), В(1,0) и характеристиками АС и ВС:
впервые была поставлена и изучена Ф. Трикоми (F. Tricomi, [1], [2]).
При определенных ограничениях на гладкость заданных функций и характер поведения производной uy искомого решения ив точках Аи ВТ. з.:
Для уравнения (1) редуцируется к отысканию регулярного в области решения и=и( х, у )уравнения (1), удовлетворяющего краевым условиям
где однозначно определяется через оператор дробного (в смысле Римана Лиувилля) дифференцирования порядка 2/3:
Г (z) гамма-функция Эйлера.
Решение задачи (1), (3) в свою очередь сводится к нахождению функции v(х)=и у(x,0) из нек-рого сингулярного интегрального уравнения. Это уравнение в случае, когда совпадает с нормальным контуром
имеет вид
где f(x) явно выражается через и а интеграл понимается в смысле глазного значения по Коши (см. [1] [4]).
При доказательство единственности и существования решения Т. з. наряду с принципом экстремума Бицадзе (см. Смешанного типа уравнение )и методом интегральных уравнений широко используется так наз. метод а b с, сущность к-рого заключается в том, что для данного дифференциального оператора 2-го порядка L(напр., Т) с областью определения D(L)строится дифференциальный оператор 1-го порядка
обладающий тем свойством, что
где C=const>0; -нек-рая норма (см. [5]).
Т. з. получила обобщения как на случай уравнений смешанного типа с несколькими линиями параболиче
ского вырождения (см. [6]) так и на случай уравнений смешанного гиперболо-параболического типа (см. [7]).
Лит.:[1] Трикоми Ф., О лилейных уравнениях в частных производных второго порядка смешанного типа, пер. с итал., М.Л., 1947; [2] его жe, Лекции по уравнениям в частных производных, пер. с итал., М., 1957; [3] Бицадзе А. В., К проблеме уравнений смешанного типа, М., 1953: [4] его же, Уравнения смешанного типа, М., 1959; [5] Берс Л., Математические вопросы дозвуковой и околозвуковой газовой динамики, пер. с англ., М., 1961; [6] Нахушев А. М., лДокл. АН СССР
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985