Поиск в словарях
Искать во всех

Математическая энциклопедия - эйлеровы числа

Эйлеровы числа

коэффициенты Е n в разложении

Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е-1)n=0, E0 =1.

При этом Е 2п+1=0, E4n положительные, E4n+2 - отрицательные целые числа для всех n=0, 1, . . .; E2=-1, E4=5, E6=61, E8=1385, E10=-50521. Э. ч. связаны с Бернулли числами В n:

Э. ч. применяются для суммирования рядов. Напр.,

Иногда Э. ч. наз. числа |E2n|.

Э. ч. введены Л. Эйлером (L. Euler, 1755).

Лит.:[1] Эйлер Л., Дифференциальное исчисление, пер. с лат., М.-Л., 1949; [2] Градштейн И. С., Рыжик И. М., Таблицы интегралов, сумм, рядов и произведений, 5 изд., М.Л., 1971.

К. Д. Соломенцев.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое эйлеровы числа
Значение слова эйлеровы числа
Что означает эйлеровы числа
Толкование слова эйлеровы числа
Определение термина эйлеровы числа
eylerovy chisla это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):