Математическая энциклопедия - гильберта преобразование
Связанные словари
Гильберта преобразование
функции fнесобственный интеграл
Если , то функция gсуществует почти для всех значений х. Если , , тогда функция gтакже принадлежит и почти всюду имеет место двойственная формула [обращение преобразования (1)]:
где константа . зависит только от р.
Формулы (1), (2) эквивалентны формулам
в к-рых интегралы понимаются в смысле главного значения.
Г. п. функции f называется также рассмотренный в смысле главного значения интеграл
Этот интеграл часто наз. Гильберта сингулярным интегралом. В теории рядов Фурье функцию определяемую формулой (6), наз. сопряженной с f.
Если то gсуществует почти всюду, а если f удовлетворяет условию Липшица с показателем то gсуществует при любом x и удовлетворяет тому же условию. Если то обладает тем же свойством и имеет место неравенство, аналогичное (3), в к-ром интегралы взяты на интервале (0,2p). Таким образом, интегральные операторы, порождаемые Г. п., являются ограниченными (линейными) операторами в соответствующих пространствах
Когда f удовлетворяет условию Липшица или и, кроме того,
то имеет место двойственная формула
причем
В классе функций, удовлетворяющих условию Липшица, равенство (7) справедливо всюду, а в классе функций, суммируемых с р-й степенью, почти всюду.
Каждую из выписанных выше двойственных формул [напр. (4), (5)] можно рассматривать как интегральное уравнение 1-го рода; тогда вторая формула даст решение этого уравнения.
Когда функции и рассматриваются как ядра интегральных операторов, то их часто наз. Гильберта ядрам и Коши ядром. Между этими ядрами в случае единичной окружности существует простая связь:
где
Лит.: [1] Нillbеrt D., Grundzuge eincr allgemeinen Theorie der linearen Integralgleichungen, Lpz.В., 19)2 (2 Aufl., 1924); [2] RieszM., "Math. Z.", 1927, Bd 27, № 2, S. 218-44: [3] Титчмарш Е., Введение в теорию интегралов Фурье, пер. с англ., М.-Л., 1948; [4] Мусхелишвили Н. И., Сингулярные интегральные уравнения, 3изд., М., 1968; [5] Бари Н. К., Тригонометрические ряды, М., 1961.
Б. В. Хведелидзе.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985