Математическая энциклопедия - крулля кольцо
Связанные словари
Крулля кольцо
коммутативное целостное кольцо А, для к-poro существует семейство дискретных нормировании поля частных Ккольца А, удовлетворяющее следующим условиям: а) для любого н для всех i, исключая, быть может, конечное число, б) для условие эквивалентно тому, что для всех Нормирования vi наз. при этом существенными.
К. к. были рассмотрены В. Круллем [1] под названием колец конечного дискретного главного порядка. Они являются наиболее естественным классом колец, в к-рых существует теория дивизоров (см. также Дивизориалъный идеал, Классов дивизоров группа). Упорядоченная группа дивизоров К. к. Аканонически изоморфна упорядоченной группе Z(I). Существенные нормирования К. к. могут быть отождествлены с множеством простых идеалов высоты 1. К. к. вполне целозамкнуто. Любое целозамкнутое нё-терово кольцо, в частности дедекиндово кольцо, является К. к. Кольцо многочленов от бесконечного числа переменных пример К. к., не являющегося нётеровым. Вообще, любое факториальное кольцо К. к. Для того чтобы К. к. было факториаль-но, необходимо и достаточно, чтобы любой его простой идеал высоты 1 был главным.
Класс К. к. замкнут относительно операций локализации, перехода к кольцу многочленов или формальных степенных рядов, а также целого замыкания в конечном расширении поля частных К.
Лит.:[1] Кru11 W., "J. reine und angew. Math.", 1931, Bd 167, S. 160-96; [2] 3 a p и с с к и и О., Самюэль П., Коммутативная алгебра, пер. с англ:, т. 2, М., 1963; [3] Б у р б а к и Н., Коммутативная алгебра, пер. с франц., М., 1971. В. И. Данилов.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985