Поиск в словарях
Искать во всех

Математическая энциклопедия - векторное аналитическое расслоение

Векторное аналитическое расслоение

локально тривиальное аналитич. расслоение над аналитич. ространством, слои к-рого обладают структурой n-мерного векторного пространства над основным полем k(если иоле комплексных чисел, то аналитич. расслоение наз. также голоморфны м). Число пназ. рангом, или размерностью, расслоения. Так же, как в топологич. случае (см. Векторное расслоение), определяются категория векторных аналитич. расслоений, понятия подрасслое-ния, факторрасслоения, прямой суммы, тензорного произведения, внешней степени В. а. р. и т. д.

Аналитич. сечения В. а. р. с базой; Xобразуют модуль над алгеброй аналитич. функций на базе. В случае, когда и компактно, конечномерное векторное пространство над (см. Конечности теоремы). Если же X - конечномерное комплексное пространство Штейна, то проективный модуль конечного типа над , причем соответствие определяет эквивалентность категории В. а. р. над Xи категории проективных модулей конечного типа [4].

Примерами В. а. р. являются касательное расслоение на аналитич. многообразии X(его аналитич. сечения аналнтич. векторные поля на X), нормальное расслоение на подмногообразии .

Классификация В. а. р. ранга пна заданном аналитич. ространстве Xравносильна классификации главных аналитических расслоений с базой X и структурной группой и при проведена полностью только в некоторых специальных случаях. Для проективных комплексных алгебраич. многообразий Xона совпадает с классификацией алгебраич. векторных расслоений (см. Сравнения теоремы в алгебраической геометрии).

В. а. р. ранга 1 на комплексном пространстве X(иначе, расслоения на комплексные прямые или линейные расслоения) играют важную роль в комплексной аналитич. еометрии. Каждый дивизор на пространстве Xестественным образом определяет аналптич. расслоение ранга 1, причем два дивизора определяют изоморфные расслоения тогда и только тогда, когда они линейно эквивалентны. На проективном алгебраич. многообразии всякое линейное аналитич. расслоение определяется дивизором. Вложимость комплексного пространства Х в проективное пространство тесно связана с существованием на Xобильных линейных расслоений (см. Обильное векторное расслоение). Если на комплексном пространстве Xзадана дискретная группа Г его автоморфизмов, то каждый фактор автоморфности группы Г определяет линейное расслоение над , аналитич. сечения к-рого суть соответствующие авто-морфные формы. В. а. р. ранга 1 составляют группу пучок обратимых элементов структурного пучка. Сопоставление каждому расслоению его 1-го класса Чжэня дает гомоморфизм

ядро к-рого есть множество топологически тривиальных линейных расслоений. В случае, когда X - комплексное многообразие, можно описать как множество классов когомологий, нредставимых замкнутыми дифференциальными формами типа (1,1). Если Х, кроме того, компактно и кэлерово, то изоморфно Пикара многообразию многообразия Xи тем самым является комплексным тором [2].

Каждому В. а. р. Vранга п на аналитич. ространстве Xсоответствует пучок ростков аналитич. сечений расслоения V, к-рый является локально свободным аналитическим пучком ранга пна X. Это соответствие определяет эквивалентность между категориями В.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое векторное аналитическое расслоение
Значение слова векторное аналитическое расслоение
Что означает векторное аналитическое расслоение
Толкование слова векторное аналитическое расслоение
Определение термина векторное аналитическое расслоение
vektornoe analiticheskoe rassloenie это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):