Поиск в словарях
Искать во всех

Математическая энциклопедия - деформация

Деформация

1) Д. аналитической структуры семейство аналитич. ространств (или связанных с ними аналитич. объектов), зависящее от параметров. Теория Д. возникла из задачи классификации всевозможных попарно не изоморфных комплексных структур на данном вещественном дифференцируемом многообразии. Основная идея, восходящая к Б. Риману (В. Biemann), состояла здесь в том, чтобы ввести аналитич. структуру на множестве всех таких структур. Уточнением этой идеи являются следующие понятия. Аналитическим семейством комплексных многообразий, параметризованным комплексным пространством S, наз. любое гладкое (т. е. локально устроенное как проекция прямого произведения с гладким слоем) аналития. отображение Если Sсвязно, то все слои Xs,отображения p диффеоморфны фиксированному слою Х о, где и могут рассматриваться как семейство комплексных структур на Х о, аналитичеcки зависящее от параметра Если семейство Xсодержит в качестве слоев все комплексные многообразия, диффеоморфные Х 0, причем все слои попарно не изоморфны, то Sназ. пространством модулей вещественного многообразия Х 0. Можно определить также пространство модулей для многообразий, принадлежащих определенному классу. Проблема построения пространства модулей (или проблема модулей) была решена вначале для компактных римановых поверхностей (см. Римановых поверхностей конформные классы). Результаты такого рода, хотя и неполные, получены и для компактных многообразий комплексной размерности 2 (см. Аналитическая поверхность).

Для многообразий больших размерностей исследование проблемы модулей встречает значительные трудности. В связи с этим К. Кодаира и Д. Спенсер [6], [7], [8] предприняли локальное изучение проблемы модулей, заложив тем самым основы теории Д. комплексных многообразий и аналитич. расслоений. Аналитической деформацией комплексного многообразия Х 0 наз. аналитич. семейство причем Sкомплексное пространство с отмеченной точкой о, слой над к-рой совпадает с Х о. Деформация Х =Х ОS наз. тривиальной. Д. многообразия Х о наз. изоморфной Д. если существует аналитич. изоморфизм тождественный на Х о и такой, что Если аналитич. Д., то всякое аналитич. отображение где о'пространство с отмеченной точкой о' и f(o')=o, определяет при помощи замены базы Д. обратный образ данной Д. при отображении f. Деформация наз. локально полной (в точке о), если любая аналитич. Д.многообразия Х о изоморфна в нек-рой окрестности отмеченной точки ее обратному образу при нек-ром локальном аналитич. отображении Если при этом df0' определено однозначно, то Д. наз. версальной в точке о, а если однозначно определен росток отображения f,то универсальной. Важную роль в теории играет линейное отображение где пучок ростков голоморфных векторных полей на Х 0, к-рое сопоставляется аналитич. Д. и наз. соответствующей инфинитезимальной деформацией.

Основная теорема локальной теории Д., доказанная М. Кураниси [9], утверждает, что для каждого компактного комплексного многообразия Х о существует версальная в точке о Д., параметризованная (не обязательно гладким) аналитич. одпространством Sв окрестности нуля пространства Н 1( Х 0,Q). При этом Sслой в точке онек-рого локального аналитич. отображения имеющего вид g(x)=[x, x]+..., где [,] -операция в градуированной алгебре Ли H*( Х о,Q), индуцированная скобкой Ли в пучке в, а точки означают члены порядка . Если Н 1( Х 0,Q)=0 то многообразие Х о является жестким, т. е. любая его Д. локально тривиальна (теорема жесткости Фрёлихера Нейенхёйса). Если Н 2( Х, Q) = 0, то Sокрестность нуля в Д 1( Х О, в). Касательное пространство T0(S)всегда совпадает с Н 1( Х 0, Q). Д. является полной в точке Oтогда и только тогда, когда соответствующая инфинитезимальная Д. сюръективна, а версальность равносильна биективности инфинитезимальной Д. Если постоянна в окрестности нуля, то деформация Кураниси является универсальной.

Локальная теория Д. компактных комплексных многообразий обобщается на случай компактных комплексных пространств. При этом вместо гладкости отображения и компактности слоя требуют, чтобы p было плоским и собственным отображением. Здесь также можно доказать существование версальной в точке оД. (см. [3], [5], [11]).

Изучаются также Д. ростков аналитич. ространств (или, что равносильно, аналитич. алгебр). Справедлива теорема о существовании версальной Д. для изолированной особой точки комплексного пространства [4].

Наряду с теорией Д. комплексных пространств существуют теории Д. различных "аналитических объектов" аналитич. расслоений, подпространств, отображений, , классов когомологий, аналитич. ространств с дополнительной структурой (напр., с поляризацией) и др. Основные определения и проблематика этих теорий аналогичны описанным выше. Результаты, полученные для главных аналитич. расслоений, также аналогичны перечисленным выше. В частности, для любого главного аналитического расслоения Е с компактной базой X и комплексной группой Ли Gв качестве структурной группы существует версальная в точке оД. расслоения Е, параметризованная аналитич. одпространством в окрестности нуля пространства где пучок ростков голоморфных сечений векторного расслоения над X, ассоциированного с Епри помощи присоединенного представления [1]. Если X - компактная риманова поверхность, a Gредуктивнан алгебраич. группа, то можно построить пространство модулей для стабильных главных аналитич. расслоений. В теории Д. подпространств, напротив, получены весьма общие результаты глобального характера. А именно, если Xпроизвольное комплексное пространство ограниченной размерности, то построено [2] плоское аналитич. семейство компактных аналитич. одпространств в X(т. е. аналитич. одпространство где Sкомплексное пространство и проекция есть собственное цлоское отображение), являющееся универсальной (в глобальном смысле) Д. для любого компактного аналитич. одпространства в X. В частности, Sявляется пространством модулей для рассматриваемой задачи. Аналогичная проблема модулей решена в относительном случае, а также для компактных аналитич. циклов заданного комплексного пространства. Из решения проблемы модулей для компактных подпространств следует решение проблемы модулей и для аналитич. отображений заданного компактного комплексного пространства в другое заданное комплексное пространство.

Существуют попытки унификации упомянутых выше теорий Д. С каждой из этих теорий можно связать контравариантный функтор Dиз категории аналитич. ространств (или ростков аналитич. ространств) в категорию множеств. Напр., в теории локальных Д. комплексного пространства Х о множество D(S)состоит из классов локально изоморфных Д. пространства Х о, параметризованных ростком аналитич. ространства S. Если фиксировать Sи элемент то возникает морфизм функторов Сюръективность этого морфизма (пара (S,d). наз. в этом случае полной) соответствует свойству полноты Д. б, а биективность свойству ее универсальности. Проблема модулей связана, таким образом, с вопросом о представимости функтора D. В связи с этим было предпринято изучение ковариантных функторов из категории артиновых колец в категорию множеств, удовлетворяющих нек-рым естественным условиям [12]. Существование полной пары доказывается, однако, лишь в категории формальных алгебр, что соответствует существованию формальной полной Д. (см. Деформация алгебраического многообразия).

Обобщением теории Д. комплексных структур на многообразии является теория Д. псевдогрупповых структур, в к-рой рассматриваются семейства псевдогрупповых структур, гладко зависящие от параметра, принимающего значения в вещественном аналитич. ространстве. В частности, для псевдогрупповой структуры на компактном гладком многообразии, соответствующей эллиптич. транзитивной псевдогруппе преобразований, доказано существование версального ростка деформации [10].

Лит.:[1] Донин И. Ф., "Матем. сб.", 1974, т. 94, № 3, с. 430-43; [2] Dоuadу A., "Ann. Inst. Fourier", 1966, t. 16, p. 1-95; [3] его же, "Ann. sci. Ecole norm, sup.", 1974, т. 7, №4, p. 569-602; [4] Grauert H., "Invent, math.", 1972, Bd 15, № 3, S. 171-98; [5] его же, там же, 1974, Bd 25, №2, S. 107-42; [6] Kodaira K., Spencer D. C, "Ann. Math.", 1958, v. 67, № 2, p. 328-401; [7] их же, там же, 1958, v. 67, № 3, p. 403-66; [8] их же, там же, 1960, v. 71, № 1, p. 43-76; [9] Кuranishi M., в кн.: Proceedings of the Conference on Complex Analysis, Minneapolis. 1964, N. Y.В., 1965, p. 142-54; [10] Moolgavkar S. H., "Trans. Amer. Math. Soc.", 1975, v. 212, № 485, p. 173-97; [11] Палaмодов В. П., "Успехи матем. наук", 1976, т. 31, № 3, с. 129194; [12] Шлезингер М., "Математика", 1971, т. 15, М" 4, С. 115 29.

А. Л. Онищип, Д. А. Пономарев.

продолжение Деформация...

2) Д. алгебраического многообразия включение алгебраич. многообразия в семейство алгебраич. многообразий. Теория Д. алгебраич. многообразий и схем представляет собой алгебраич. аналог теории Д. аналитич. структур. Ее основными вопросами являются следующие:

Существование подъема. Дана схема Х о над полем к, схема S, точка с полем вычетов k(s0)=k. Существует ли плоская S-схема X, для к-рой слой XS0 над точкой s0 изоморфен Х 0? (S-схема Xназ. деформацией, или подъемом, схемы Х 0 над S).

Проблема универсальности. Существует ли версальная (соответственно универсальная) Д. схемы Х 0, т. е. такая Д. Мнад схемой Х 0, что для любой другой Д. найдется (соответственно единственный) морфизм для которого

Каждая Д. схемы Х 0 с помощью операции формального пополнения вдоль слоя X S0 определяет формальную деформацию х над пополнением локального кольца схемы Sв точке s0, т. е. плоскую формальную схему над с топологич. пространством Х 0. Формальные аналоги перечисленных выше вопросов формулируются следующим образом:

Существование формальной Д. Дано полное локальное кольцо с полем вычетов к. Существует ли плоская формальная схема над с топологическим пространством Х 0?

Существование формальной схемы модулей. Существует ли формальная версальная (соответственно универсальная) Д., т. е. плоская формальная схема р: х->Qнад полным локальным кольцом с полем вычетов ктакая, что для любой формальной Д. имеется (соответственно единственный) гомоморфизм колец для которого

Универсальная формальная Д. гладкого многообразия представляет собой алгебраич. аналог локального пространства модулей в теории Д. аналитич. структур.

Если S = Spec R, где Rлокальное артиново (соответственно полное) кольцо с полем вычетов к, то Д. Х 0 над Sназ. инфинитезимальной (соответственно эффективной формальной). В случае, когда Rполное локальное кольцо характеристики нуль (напр., кольцо Витта векторов), эффективная формальная Д. Х 0 наз. подъемом Х 0 в характеристику нуль.

Если Х 0 - гладкая k-схема и Н 2( Х 0,TX0)=0, где TX0касательный пучок на Х 0, то для любого артинова (соответственно полного) локального кольца существует инфинитезимальная (соответственно формальная) Д. Х 0. При этом, если Н 1( Х 0, Т X0)=0, то такая Д. единственна с точностью до изоморфизма (см. [4]). Аналогичные утверждения для необязательно гладких схем даются в терминах кокасательного комплекса (см. [5], [6]). Вопрос о существовании эффективной формальной Д. изучается с помощью рассмотрения функтора DX0 из категории С k артиновых локальных колец с полем вычетов кв категорию множеств, к-рый сопоставляет каждому объекту Rиз С k множество всех инфинитезимальных Д. Х 0 над R. Универсальная формальная Д. Х 0 существует в том и только в том случае, когда функтор является пропредставимым функтором. При этом пропредставляющий объект полное локальное кольцо М X0 c полем вычетов кназ. формальной схемой модулей к-схемы Х 0. Формальная версальная Д.существует, если Х 0 собственна над кили X0, есть аффинная схема конечного типа над кс изолированными особыми точками (см. [2], [6]). Версальная формальная Д. является универсальной, если для любого сюръективного гомоморфизма локальных артиновых колец и Д. из DX0(R' )естественное отображение групп автоморфизмов

является сюръективным. Это условие выполняется, напр., если Х 0гладкая схема и H0 (Х 0, Т X0)=0. При этом, если Н 2( Х 0, TX0) = 0, то формальная схема модулей М X0 является полным регулярным локальным кольцом, изоморфным кольцу k[[t1, ..., tm]]формальных степенных рядов от mпеременных. Число mравно в этом случае dimkH1 (Х 0, Т X0 )и наз. числом локальных модулей схемы Х 0. В общем случае dimkH1 (Х 0, Т X0 )равна размерности касательного пространства к М X0 и , т. е. размерности dimkm/m2, где mмаксимальный идеал соответствующего локального кольца, а

Наличие нильпотентных элементов в формальной схеме модулей представляет довольно частое явление.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое деформация
Значение слова деформация
Что означает деформация
Толкование слова деформация
Определение термина деформация
deformaciya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):