Математическая энциклопедия - изоморфизм
Связанные словари
Изоморфизм
соответствие (отношение) между объектами или системами объектов, выражающее в некотором смысле тождество их строения. И. в произвольной категории есть обратимый морфизм, т. е. морфизм j, для к-рого существует такой морфизм j-1,что произведение j-1j=jj-1=e единичный морфизм.
Понятие И. возникло в математике применительно к конкретным алгебраич. системам (прежде всего к труппам) и было естественным образом распространено на более широкий класс математич. структур. Классич. примером изоморфных, "одинаково устроенных" систем могут служить множество R всех действительных чисел с определенной на нем операцией сложения и множество Рположительных действительных чисел с заданной на нем операцией умножения.
Пусть А и А' произвольные однотипные алгебраические системы, записанные в сигнатуре
с функциональными символами Fi, i ОIи предикатными символами
Изоморфизмом, или изоморфным отображением, системы Ана систему А' наз. взаимно однозначное отображение j множества Ана множество А', обладающее свойствами:
для всех элементов а 1, а2, . . . из Аи всех Таким образом, во всякой категории алгебраич. систем И. есть гомоморфизм, являющийся биекцией. И. алгебраич. системы на себя наз. автоморфизмом.
Отношение И. обладает свойствами рефлексивности, симметричности и транзитивности, т. е. является отношением эквивалентности, разбивающим любое множество, на к-ром оно определено, на непересекающиеся классы эквивалентности классы попарно изоморфных систем. Класс алгебраич. систем, содержащий вместе со всякой системой все ей изоморфные, наз. абстрактным классом.
О. А. Иванова., Д. М. Смирнов.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985