Математическая энциклопедия - изопериметрическая задача
Связанные словари
Изопериметрическая задача
одна из основных задач классического вариационного исчисления. И. з. состоит в минимизации функционала:
при ограничениях вида
и нек-рых краевых условиях.
И. з. приводится к Лагранжа задаче при помощи введения новых переменных г,-, удовлетворяющих дифференциальным уравнениям
и граничным условиям
Необходимые условия оптимальности И. з. имеют тот же вид, что и для простейшей задачи вариационного исчисления относительно Лагранжа функции:
Название "И. з." происходит от следующей классической задачи: среди всех замкнутых линий на плоскости с заданным периметром найти линию, к-рая ограничивает наибольшую площадь.
Лит.:[1] Блисс Г. А., Лекции по вариационному исчислению, пер. с англ., М., 1950; [2] Цлаф Л. Я., Вариационное исчисление и интегральные уравнения, 2 изд., М., 1970; [3] Лаврентьев М. А., Люстерник Л. А., Курс вариационного исчисления, 2 изд., М.Л., 1950.
И. Б. Вапнярский.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985